Answer:
What do,you mean
Step-by-step explanation:
Answer:
I can't understand this language sorry
<h3>Given</h3>
... f(x) = x² -4x +1
<h3>Find</h3>
... a) f(-8)
... b) f(x+9)
... c) f(-x)
<h3>Solution</h3>
In each case, put the function argument where x is, then simplify.
a) f(-8) = (-8)² -4(-8) +1 = 64 +32 + 1 = 97
b) f(x+9) = (x+9)² -4(x+9) +1
... = x² +18x +81 -4x -36 +1
... f(x+9) = x² +14x +46
c) f(-x) = (-x)² -4(-x) +1
... f(-x) = x² +4x +1
Answer:
Step-by-step explanation:
The first parabola has vertex (-1, 0) and y-intercept (0, 1).
We plug these values into the given vertex form equation of a parabola:
y - k = a(x - h)^2 becomes
y - 0 = a(x + 1)^2
Next, we subst. the coordinates of the y-intercept (0, 1) into the above, obtaining:
1 = a(0 + 1)^2, and from this we know that a = 1. Thus, the equation of the first parabola is
y = (x + 1)^2
Second parabola: We follow essentially the same approach. Identify the vertex and the two horizontal intercepts. They are:
vertex: (1, 4)
x-intercepts: (-1, 0) and (3, 0)
Subbing these values into y - k = a(x - h)^2, we obtain:
0 - 4 = a(3 - 1)^2, or
-4 = a(2)². This yields a = -1.
Then the desired equation of the parabola is
y - 4 = -(x - 1)^2