Weathering and chemical substance weathering
Answer : The value of rate of reaction is 
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The given chemical equation is:

Rate law expression for the reaction is:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
As per question,
a = order with respect to
= 2
b = order with respect to
= 1
Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of rate of reaction by using the rate law expression.
Given :
k = rate constant = 
[NO] = concentration of NO = 
= concentration of
= 
Now put all the given values in the above expression, we get:


Hence, the value of rate of reaction is 
Answer:
Wavelenght is 7,79x10⁻⁵ m
Explanation:
The equation that connects wavelentgh (λ) and frequency (ν) is:
λ=c/ν
Where c is speed of light (3x10⁸ m/sec) and λ is expressed in lenght´s units and ν is expressed in "time⁻¹ " units (for example, sec⁻¹)
According to the details, if we just replace the given value of frequency, we just obtaing wavelenght data:
λ= (3x10⁸ m/sec)/(3,85x10¹² sec⁻¹) = 7,79x10⁻⁵ m
Answer:
.875
Explanation:
Use Boyle's Law and rearrange formula.
- Hope this helps! Please let me know if you need further explanation.
The temperature dropped because B. energy was absorbed during the chemical reaction.
If energy was released, the temperature would rise. If there was no energy input, the temperature would stay the same. Since temperature dropped, it means that energy was absorbed.