Answer:
5
Explanation:
An atom has the same number of protons and electrons
Hello!
The H₃O⁺ concentration can be found using the definition of pH and clearing the equation for [H₃O⁺]. The solution has a pH lower than 7, so the Sauvignon Blanc is
acid. The calculation for [H₃O⁺] is shown below:
![pH=-log [H_3O^{+}]](https://tex.z-dn.net/?f=pH%3D-log%20%5BH_3O%5E%7B%2B%7D%5D%20)
![[H_3O^{+}]= 10^{-pH}=10^{-3,24}=0,00058M](https://tex.z-dn.net/?f=%5BH_3O%5E%7B%2B%7D%5D%3D%2010%5E%7B-pH%7D%3D10%5E%7B-3%2C24%7D%3D0%2C00058M%20)
So, the concentration of H₃O⁺ in a Sauvignon Blanc with a pH of 3,24 is
0,00058 MHave a nice day!
Answer:
Magnesium
0.003mole
Explanation:
The problem here entails we find the metal in the carbonate.
For group 2 member, let the metal = X;
The carbonate is XCO₃;
If we sum the atomic mass of the elements in the metal carbonate, we should arrive at 84g/mol
Atomic mass of C = 12g/mol
O = 16g/mol
Atomic mass of X + 12 + 3(16) = 84
Atomic mass of X = 84 - 60 = 24g/mol
The element with atomic mass of 24g is Magnesium
B.
Number of moles in 0.3g of CaCO₃:
Molar mass of CaCO₃ = 40 + 12 + 3(16) = 100g/mol
Number of moles =
Number of moles =
= 0.003mole
Answer:
The new concentration is 0.125 M.
Explanation:
Given data:
Initial volume V₁ = 125.0 mL
Initial molarity M₁ = 0.150 M
New volume V₂ = 25 mL +125 mL = 150 mL
New concentration M₂ = ?
Solution:
M₁V₁ = M₂V₂
0.150 M × 125 mL = M₂ × 150 mL
M₂ = 0.150 M × 125 mL / 150mL
M₂ = 18.75 M.mL/150 mL
M₂ = 0.125 M
The new concentration is 0.125 M.