Ar (argon) has 18 electrons
Cl- would give you 18 electrons
F- would give you 10 electrons
Li+ would give you 2 electrons
Na+ would give you 10 electrons
Cl- would be the correct answer
We have to get the relationship between metallic character and atomic radius.
Metallic character increases with increase in atomic radius and decrease with decrease of atomic radius.
If electrons from outermost shell of an element can be removed easily, that atom can be considered to have more metallic character.
With increase in atomic radius, nuclear force of attraction towards outermost shell electron decreases which facilitates the release of electron.
With decrease in atomic radius, nuclear force of attraction towards outermost shell electrons increases, so electrons are hold tightly to nucleus. Hence, removal of electron from outermost shell becomes difficult making the atom less metallic in nature.
Answer:
By balancing the chemical equation
Explanation:
The Law of Conservation of Matter states that matter cannot be destroyed nor created.
That is, you must have the same amount of matter before and after a reaction.
Atoms are made of matter, so you must have the same number of each type of atom in the reactants as in the products. You must balance the equation.
Consider the reaction
2H₂ + O₂ ⟶ 2H₂O
You must have 2s in front of H₂ and H₂O to balance the atoms.
They give you four atoms of H and two atoms of O on each side of the arrow.
Rows of elements are called periods. The period number<span> of an element signifies the highest unexcited energy level for an electron in that element.
</span>Columns of elements help define element groups<span>. </span>Elements within a group share<span> several common properties. Groups are elements have the same outer electron arrangement.</span>
Answer:
Option A. Addition
Explanation:
Unsaturated compounds under goes addition reaction to produce saturated compounds..
In the equation given above i.e
H2C=CH2 + F–F —> FCH2CH2F
we can see that the double in H2C=CH2 disappear by the reaction of F–F to produce FCH2CH2F which has no double. This simply indicates that the F–F was added to H2C=CH2. Hence, the reaction is called addition reaction.