Answer : Hydrogen-bonding, Dipole-dipole attraction and London-dispersion force.
Explanation :
The given molecule is, 
Three types of inter-molecular forces are present in this molecule which are Hydrogen-bonding, Dipole-dipole attraction and London-dispersion force.
- Hydrogen-bonding : when the partial positive end of hydrogen is bonded with the partial negative end of another molecule like, oxygen, nitrogen, etc.
- Dipole-dipole attraction : When the partial positively charged part of the molecule is interact with the partial negatively charged part of the molecule. For example : In case of HCl.
- London-dispersion force : This force is present in all type of molecule whether it is a polar or non-polar, ionic or covalent. For example : In case of Br-Br , F-F, etc
Hydrogen-bonding is present between the oxygen and hydrogen molecule.
Dipole-dipole forces is present between the carbon and oxygen molecule.
London-dispersion forces is present between the carbon and carbon molecule.
It is true it is used for inflammation and pain in muscle and joints it is also used for muscle and bone disorders
Answer:
i know the problem
2c2h6(g)+702(g)->4co2(G)+6g20(1) thats double replacement i dont know the first part
Answer:
Cl2 + 2NaBr --> 2NaCl + Br2
Explanation:
This is a single displacement reaction where one side of the ionic compound switches with the other.
So, Cl2 + NaBr ---> NaCl + Br2
This isolates the Bromine and puts the Chlorine in it's place.
Then, balance out the equation like so and you should get
Cl2 + 2NaBr --> 2NaCl + Br2