Answer:
c
Step-by-step explanation:
the perimeter of the sector
The average rate of change of <em>g(x)</em> over the interval [2, 8] is given by
(<em>g</em> (8) - <em>g</em> (2)) / (8 - 2)
In other words, it's the slope of the line through the points (2, <em>g</em> (2)) and (8, <em>g</em> (8)).
Use the definition of the function to evaluate it at the points in the numerator:
• 8 ≥ 4, so using the second piece, <em>g</em> (8) = -0.5(8) + 8 = 4
• 2 < 4, so <em>g</em> (2) = 5(2) + 1 = 11
Then the average rate of change is
(<em>g</em> (8) - <em>g</em> (2)) / (8 - 2) = (4 - 11) / 6 = -7/6
The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then




