Sue's total pay of year will have three parts
1) Fixed Salary for 12 months
one month salary = £1410
so 12 month salary = £1410 x 12 = £16920
2) 26% of total profit
Total cost to the company- £473,500
Total income for the company - £549,000
Profit = Total income for the company - Total cost to the company
= £549,000 - £473,500 = £75500
Sues income from profit = 26% of £75500 = (26 × 75500)/100 = £19630
3) Bonus if Sue sells at least 16 cars
Given number of months when sue solds atleast 16 cars = 4
So bonus income = 4 × 390 = £1560
Adding the three above parts
Sue's total pay for the year = £16920 + £19630 + £1560 = £38110
Answer:
67.3 x 10^-9
Step-by-step explanation:
Answer:
a = 3, b = 0, c = 0, d = -2
Step-by-step explanation:
<em>To find the reflection Multiply the matrices</em>
∵ The dimension of the first matrix is 2 × 2
∵ The dimension of the second matrix is 2 × 3
<em>1. Multiply the first row of the 1st matrix by each column in the second matrix add the products of each column to get the first row in the 3rd matrix.</em>
2. Multiply the second row of the 1st matrix by each column in the second matrix add the products of each column to get the second row of the 3rd matrix
×
= ![\left[\begin{array}{ccc}(1*0+0*0)&(1*3+0*0)&(1*0+0*2)\\(0*0+-1*0)&(0*3+-1*0)&(0*0+-1*2)\end{array}\right]=\left[\begin{array}{ccc}0&3&0\\0&0&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%281%2A0%2B0%2A0%29%26%281%2A3%2B0%2A0%29%26%281%2A0%2B0%2A2%29%5C%5C%280%2A0%2B-1%2A0%29%26%280%2A3%2B-1%2A0%29%26%280%2A0%2B-1%2A2%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%263%260%5C%5C0%260%26-2%5Cend%7Barray%7D%5Cright%5D)
Compare the elements in the answer with the third matrix to find the values of a, b, c, and d
∴ a = 3
∴ b = 0
∴ c = 0
∴ d = -2
Hope this helps sorry my writing is messy