Answer:
A kite has only 1 pair of opposite congruent sides, whereas a parallelogram has 2 pairs of opposite congruent sides
Hope this helps!
<span>Vector Equation
(Line)</span>(x,y) = (x,y) + t(a,b);tERParametric Formx = x + t(a), y = y + t(b); tERr = (-4,-2) + t((-3,5);tERFind the vector equation of the line passing through A(-4,-2) & parallel to m = (-3,5)<span>Point: (2,5)
Create a direction vector: AB = (-1 - 2, 4 - 5)
= (-3,-1) or (3,1)when -1 (or any scalar multiple) is divided out.
r = (2,5) + t(-3,-1);tER</span>Find the vector equation of the line passing through A(2,5) & B(-1,4)<span>x = 4 - 3t
y = -2 + 5t
;tER</span>Write the parametric equations of the line passing through the line passing through the point A(4,-2) & with a direction vector of m =(-3,5)<span>Create Vector Equation first:
AB = (2,8)
Point: (4,-3)
r = (4,-3) + (2,8); tER
x = 4 + 2t
y = -3 + 8t
;tER</span>Write the parametric equations of the line through A(4,-3) & B(6,5)<span>Make parametric equations:
x = 5 + 4t
y = -2 + 3t ; tER
For x sub in -3
-3 = 5 + 4t
(-8 - 5)/4 = t
-2 = t
For y sub in -8
-8 = -2 + 3t
(-8 + 2)/3 = t
-2 = t
Parameter 't' is consistent so pt(-3,-8) is on the line.</span>Given the equation r = (5,-2) + t(4,3);tER, is (-3,-8) on the line?<span>Make parametric equations:
x = 5 + 4t
y = -2 + 3t ; tER
For x sub in 1
-1 = 5 + 4t
(-1 - 5)/4 = t
-1 = t
For y sub in -7
-7 = -2 + 3t
(-7 + 2)/3 = t
-5/3 = t
Parameter 't' is inconsistent so pt(1,-7) is not on the line.</span>Given the equation r = (5,-2) + t(4,3);tER, is (1,-7) on the line?<span>Use parametric equations when generating points:
x = 5 + 4t
y = -2 + 3t ;tER
X-int:
sub in y = 0
0 = -2 + 3t
solve for t
2/3 = t (this is the parameter that will generate the x-int)
Sub t = 2/3 into x = 5 + 4t
x = 5 + 4(2/3)
x = 5 + (8/3)
x = 15/3 + (8/3)
x = 23/3
The x-int is (23/3, 0)</span>What is the x-int of the line r = (5,-2) + t(4,3); tER?Note: if they define the same line: 1) Are their direction vectors scalar multiples? 2) Check the point of one equation in the other equation (LS = RS if point is subbed in)What are the two requirements for 2 lines to define the same line?
Answer:
9x2x1 and 6x3x1
Step-by-step explanation:
This question has multiple answers to it. A sandbox of 18 cubic feet with a height of a foot is actually quite simple. If it is confusing I would try to visualize the sandbox. Since volume is b x h x w the first thing you should do is divide 18 by 1. This would be more important if the height was more than one. Now you just have to find two other numbers that can divide 18. 9x2=18 and 6x3=18 so two possible dimensions for the sandbox are 9x2x1 and 6x3x1