Y = mx + c
m = 2
y = 2x + c
At (5, 0)
0 = 2(5) + c
c = -10
y = 2x - 10
A= -6(-2) < -10
12 < -10
NOT TRUE
B= -2(-2) > -3
4 > -3
TRUE
C= -2/4 < 0
-1/2 < 0
TRUE
D= -4 < (-2)-5
-4 < -7
TRUE
So the answer is A
Answer:
D. (2x + 35)° = 47°
Step-by-step explanation:
If it is true the angle UOW and angle XOV are vertical angles, they must be congruent and congruent angles have the same angles. This means that in order for UOW and XOV to be vertical angles they must share the same angle.
Give you: (2x + 35)° = 47°
Answer:
see below
Step-by-step explanation:
<h3>Proposition:</h3>
Let the diagonals AC and BD of the Parallelogram ABCD intercept at E. It is required to prove AE=CE and DE=BE
<h3>Proof:</h3>
1)The lines AD and BC are parallel and AC their transversal therefore,
![\displaystyle \angle DAC = \angle ACB \\ \ \qquad [\text{ alternate angles theorem}]](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%5Cangle%20DAC%20%3D%20%20%5Cangle%20ACB%20%5C%5C%20%20%5C%20%5Cqquad%20%5B%5Ctext%7B%20alternate%20angles%20theorem%7D%5D)
2)The lines AB and DC are parallel and BD their transversal therefore,
![\displaystyle \angle BD C= \angle ABD \\ \ \qquad [\text{ alternate angles theorem}]](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%5Cangle%20BD%20C%3D%20%20%5Cangle%20ABD%20%5C%5C%20%20%5C%20%5Cqquad%20%5B%5Ctext%7B%20alternate%20angles%20theorem%7D%5D)
3)now in triangle ∆AEB and ∆CED
therefore,

hence,
Proven
The instruction is right there ! "COMBINE THE LIKE TERMS".
That means ==> add up all the 'n' terms and make a single 'n' term, then ==> add up all the plain numbers to make a single plain number.