The result of division is 21.392
Rounded to the nearest tenth its 21.4 answer
(because the hundredth digit is 9 so you add 1 to the tenth digit.)
Using the lognormal and the binomial distributions, it is found that:
- The 90th percentile of this distribution is of 136 dB.
- There is a 0.9147 = 91.47% probability that received power for one of these radio signals is less than 150 decibels.
- There is a 0.0065 = 0.65% probability that for 6 of these signals, the received power is less than 150 decibels.
In a <em>lognormal </em>distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of
.
- The standard deviation is of

Question 1:
The 90th percentile is X when Z has a p-value of 0.9, hence <u>X when Z = 1.28.</u>






The 90th percentile of this distribution is of 136 dB.
Question 2:
The probability is the <u>p-value of Z when X = 150</u>, hence:



has a p-value of 0.9147.
There is a 0.9147 = 91.47% probability that received power for one of these radio signals is less than 150 decibels.
Question 3:
10 signals, hence, the binomial distribution is used.
Binomial probability distribution
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
For this problem, we have that
, and we want to find P(X = 6), then:


There is a 0.0065 = 0.65% probability that for 6 of these signals, the received power is less than 150 decibels.
You can learn more about the binomial distribution at brainly.com/question/24863377
It would be 33.33 because you have no change 50 into a fraction and divide that by 2/3
Answer:
The numbers 1 to 12 must be placed in the circles of the star shown on the right. The sums of the numbers in each row, and the sum of the numbers in the six outer circles of the star, must be equal to 26. Arrange the numbers accordingly.