The terms with the same variables is called like term
Answer:
x = 11
Step-by-step explanation:
The relationship between the sine and cosine functions can be written as ...
sin(x) = cos(90 -x)
sin(A) = cos(90 -A) = cos(B) . . . . substituting the given values
Equating arguments of the cosine function, we have ...
90 -(3x+4) = 8x -35
86 -3x = 8x -35
86 +35 = 8x +3x . . . . . add 3x+35 to both sides
121 = 11x . . . . . . . . . . . . collect terms
121/11 = x = 11 . . . . . . . . divide by 11
_____
<em>Comment on the solution</em>
There are other applicable relationships between sine and cosine as well. The result is that there are many solutions to this equation. One set is ...
11 +(32 8/11)k . . . for any integer k
Another set is ...
61.8 +72k . . . . . for any integer k
12 = 7+5 Hope this helps:)
Hi there!
»»————- ★ ————-««
I believe your answer is:
»»————- ★ ————-««
Here’s why:
- Recall the Triangle Angle Sum Theorem: The three angles of all triangles add up to a sum of 180°.
- We will set up an equation based on this and then solve.
⸻⸻⸻⸻

⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.