Explanation:
A.
The first student will be on the lower bunk on the first floor because 1. They want on the lowest available floor and 2. They want to be in a lower bunk if available.
B.
7 students are in the TOP bunks because 1. They want on the lowest available floor and 2. They want to be in a lower bunk if available. Therefore, all the rooms up till the third floor (Remember, third floor has 3 suites), so the first floor is filled - 1 person on the top bunk, 2 floor is filled- 4 persons and the third floor; the first suite is filled - 1 person and the second suite is a little partially filled- 1 person.
C.
Following the criteria 1, 2 and 3, the 21st student occupies the third suite on the third floor because all the floors (1 and 2) are occupied so the third suite on the third floor is still vacant.
D.
From the criteria there are therefore 10 persons at the TOP bunk. All the rooms up till the third floor are filled, so the first floor is filled - 1 person on the top bunk, second floor is filled (2 suites) - 4 persons and the third floor; the first suite and second suite is filled - 4 persons; the thirs suite has 6 persons present so 1 person is at the top bunk.
<span>Each mole contains Avagodro's number of atoms i.e. 6.023x10^23, so
3 moles x 6.023x10^23 atoms/mole = 18.069x10^23 atoms = 1.8x19^24 atoms </span>
C. the rock may have diferrent textures
Answer:
c. By itself, heme is not a good oxygen carrier. It must be part of a larger protein to prevent oxidation of the iron.
e. Both hemoglobin and myoglobin contain a prosthetic group called heme, which contains a central iron ( Fe ) (Fe) atom.
f. Hemoglobin is a heterotetramer, whereas myoglobin is a monomer. The heme prosthetic group is entirely buried within myoglobin.
Explanation:
The differences between hemoglobin and myoglobin are most important at the level of quaternary structure. Hemoglobin is a tetramer composed of two each of two types of closely related subunits, alpha and beta. Myoglobin is a monomer (so it doesn't have a quaternary structure at all). Myoglobin binds oxygen more tightly than does hemoglobin. This difference in binding energy reflects the movement of oxygen from the bloodstream to the cells, from hemoglobin to myoglobin.
Myoglobin binds oxygen
The binding of O 2 to myoglobin is a simple equilibrium reaction:
Answer:
B. The rate constant is the reaction rate divided by the concentration
terms.
Explanation:
The rate constant can be determined from the rate law because it is the reaction rate divided by the concentration terms. I hope I could help! :)