If you divide a negative by a negative, your result will be positive.
For example, -5/-1=5.
Answer:
y = 4/5
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
7/8y + 1/2 = 1 1/5
<u>Step 2: Solve for </u><em><u>y</u></em>
- Convert to improper fraction: 7/8y + 1/2 = 6/5
- [Subtraction Property of Equality] Subtract 1/2 on both sides: 7/8y = 7/10
- [Division Property of Equality] Divide 7/8 on both sides: y = 4/5
The known endpoint is P = (-16,0)
Let Q = (x,y) be the other endpoint. It is unknown for now.
Looking at the x coordinates of P and Q, we see that they are -16 and x respectively. Adding these values up gives -16+x. Dividing that result by 2 gives (-16+x)/2. This result is exactly equal to the midpoint x coordinate, which is the x coordinate of M (0).
So we have this equation (-16+x)/2 = 0. Let's solve for x
(-16+x)/2 = 0
2*(-16+x)/2 = 2*0
-16+x = 0
x-16 = 0
x-16+16 = 0+16
x = 16
Therefore the x coordinate of point Q is 16.
------------------------------------
Let's do something similar for the y coordinates.
The y coordinates of P and Q are 0 and y respectively. Add them up and divided by 2, then set the result equal to -16 (y coordinate of midpoint M) getting this equation (0+y)/2 = -16
Solve for y
(0+y)/2 = -16
y/2 = -16
2*y/2 = 2*(-16)
y = -32
The y coordinate of point Q is -32
------------------------------------
The point Q goes from (x,y) to (16, -32)
Final Answer: (16, -32)
8/x= 2/5
8•5= 2•x
40=2x
40/2= x
20= x