Answer:
(a): The 95% confidence interval is (46.4, 53.6)
(b): The 95% confidence interval is (47.9, 52.1)
(c): Larger sample gives a smaller margin of error.
Step-by-step explanation:
Given
-- sample size
-- sample mean
--- sample standard deviation
Solving (a): The confidence interval of the population mean
Calculate the standard error
![\sigma_x = \frac{\sigma}{\sqrt n}](https://tex.z-dn.net/?f=%5Csigma_x%20%3D%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%20n%7D)
![\sigma_x = \frac{10}{\sqrt {30}}](https://tex.z-dn.net/?f=%5Csigma_x%20%3D%20%5Cfrac%7B10%7D%7B%5Csqrt%20%7B30%7D%7D)
![\sigma_x = \frac{10}{5.478}](https://tex.z-dn.net/?f=%5Csigma_x%20%3D%20%5Cfrac%7B10%7D%7B5.478%7D)
![\sigma_x = 1.825](https://tex.z-dn.net/?f=%5Csigma_x%20%3D%201.825)
The 95% confidence interval for the z value is:
![z = 1.960](https://tex.z-dn.net/?f=z%20%3D%201.960)
Calculate margin of error (E)
![E = z * \sigma_x](https://tex.z-dn.net/?f=E%20%3D%20z%20%2A%20%5Csigma_x)
![E = 1.960 * 1.825](https://tex.z-dn.net/?f=E%20%3D%201.960%20%2A%201.825)
![E = 3.577](https://tex.z-dn.net/?f=E%20%3D%203.577)
The confidence bound is:
![Lower = \bar x - E](https://tex.z-dn.net/?f=Lower%20%3D%20%5Cbar%20x%20-%20E)
![Lower = 50 - 3.577](https://tex.z-dn.net/?f=Lower%20%3D%2050%20-%203.577)
![Lower = 46.423](https://tex.z-dn.net/?f=Lower%20%3D%2046.423)
--- approximated
![Upper = \bar x + E](https://tex.z-dn.net/?f=Upper%20%3D%20%5Cbar%20x%20%2B%20E)
![Upper = 50 + 3.577](https://tex.z-dn.net/?f=Upper%20%3D%2050%20%2B%203.577)
![Upper = 53.577](https://tex.z-dn.net/?f=Upper%20%3D%2053.577)
--- approximated
<em>So, the 95% confidence interval is (46.4, 53.6)</em>
Solving (b): The confidence interval of the population mean if mean = 90
First, calculate the standard error of the mean
![\sigma_x = \frac{\sigma}{\sqrt n}](https://tex.z-dn.net/?f=%5Csigma_x%20%3D%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%20n%7D)
![\sigma_x = \frac{10}{\sqrt {90}}](https://tex.z-dn.net/?f=%5Csigma_x%20%3D%20%5Cfrac%7B10%7D%7B%5Csqrt%20%7B90%7D%7D)
![\sigma_x = \frac{10}{9.49}](https://tex.z-dn.net/?f=%5Csigma_x%20%3D%20%5Cfrac%7B10%7D%7B9.49%7D)
![\sigma_x = 1.054](https://tex.z-dn.net/?f=%5Csigma_x%20%3D%201.054)
The 95% confidence interval for the z value is:
![z = 1.960](https://tex.z-dn.net/?f=z%20%3D%201.960)
Calculate margin of error (E)
![E = z * \sigma_x](https://tex.z-dn.net/?f=E%20%3D%20z%20%2A%20%5Csigma_x)
![E = 1.960 * 1.054](https://tex.z-dn.net/?f=E%20%3D%201.960%20%2A%201.054)
![E = 2.06584](https://tex.z-dn.net/?f=E%20%3D%202.06584)
The confidence bound is:
![Lower = \bar x - E](https://tex.z-dn.net/?f=Lower%20%3D%20%5Cbar%20x%20-%20E)
![Lower = 50 - 2.06584](https://tex.z-dn.net/?f=Lower%20%3D%2050%20-%202.06584)
![Lower = 47.93416](https://tex.z-dn.net/?f=Lower%20%3D%2047.93416)
--- approximated
![Upper = \bar x + E](https://tex.z-dn.net/?f=Upper%20%3D%20%5Cbar%20x%20%2B%20E)
![Upper = 50 + 2.06584](https://tex.z-dn.net/?f=Upper%20%3D%2050%20%2B%202.06584)
![Upper = 52.06584](https://tex.z-dn.net/?f=Upper%20%3D%2052.06584)
--- approximated
<em>So, the 95% confidence interval is (47.9, 52.1)</em>
Solving (c): Effect of larger sample size on margin of error
In (a), we have:
![E = 3.577](https://tex.z-dn.net/?f=E%20%3D%203.577)
In (b), we have:
![E = 2.06584](https://tex.z-dn.net/?f=E%20%3D%202.06584)
<em>Notice that the margin of error decreases when the sample size increases.</em>