\frac{d}{dx}\left(\frac{1+x^4+x^6}{x^2+x+1}\right)=\frac{4x^7+5x^6+8x^5+3x^4+4x^3-2x-1}{\left(x^2+x+1\right)^2}
copy and paste that into a URL
32 divided by 127 and the second one, i dont know
Answer:
w⁴ + 3w³ + 11w² + 6w + 18
Step-by-step explanation:
Rectanle area = height * width
area = (w²+3w+9)(w² + 2)
= w²*w² + w²*2 + 3w*w² + 3w*2 + 9*w² + 9*2
= w⁴ + 2w² + 3w³ + 6w + 9w² + 18
= w⁴+ 3w³ + (9w²+2w²) + 6w + 18
= w⁴ + 3w³ + 11w² + 6w + 18
The answer is 2.6, 2 is whole number so it is put first and the fraction

if you add them together you get the answer of