Answer:
7.08
Explanation:
To solve this problem we'll use the <em>Henderson-Hasselbach equation</em>:
- pH = pka + log
![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Where
is the ratio of [sodium formate]/[formic acid] and pka is equal to -log(Ka), meaning that:
- pka = -log (1.8x10⁻⁴) = 3.74
We<u> input the data</u>:
- 4.59 = 3.74 + log
![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
And<u> solve for </u>
:
- 0.85 = log
![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
=![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
= 7.08
Rechargeable batteries use a reversible reaction medium to convert electrical current to a form of chemical energy which can be stored for future use.
<h3>
What is a rechargeable battery?</h3>
A rechargeable battery is a type of battery that can be charged many times by passing electric current through the cells in a reversible reaction.
<h3>How does recahargeable battery store energy?</h3>
When electrical energy from an outside source is applied to a secondary cell (reachargeable battery), the negative to positive electron flow that occurs during discharge is reversed, and the cell's charge is restored. This process is called reversible reaction.
Thus, rechargeable batteries use a reversible reaction medium to convert electrical current to a form of chemical energy which can be stored for future use.
Learn more about reversible reaction here: brainly.com/question/11412193
Answer:
The statement is false
Explanation:
Number of moles of alkene = 2.31 × 85/1000 = 0.196 moles
Number of moles of Br2 = 3.55 × 7.5/1000 = 0.0266 moles
Given that the reaction is 1:1
1 mole of alkene reacts with 1 mole of bromine
0.196 moles of alkene should react with 0.196 moles of bromine
Hence, to achieve 100%yield, 0.196 moles of bromine and not 25mmols of elemental bromine
Water is the component that is produced here.