Answer:
a) 3/64 = 0.046 (4.6%)
b) 63/64 = 0.9843 (98.43%)
c) 1/64 = 0.015 (1.5%)
d) 1/4 = 0.25 (25%)
Step-by-step explanation:
in order to verify that the f(x) is a probability mass function , then it should comply the requirement that the sum of probabilities over the entire space of x is equal to 1. Then
∑f(x)*Δx = 1
if f(x)=(3/4)(1/4)^x , x = 0, 1, 2, ...
then Δx=1 and
∑f(x) = (3/4)∑(1/4)^x = (3/4)* [ 1/(1-1/4)] = (3/4)*(4/3) = 1
then f represents a probability mass function
a) P(X = 2)= f(x=2) = (3/4)(1/4)^2 = 3/64 = 0.046 (4.6%)
b) P(X ≤ 2) = ∑f(x) = f(x=0)+ f(x=1) + f(x=2) = (3/4) + (3/4)(1/4) + 3/64 = 63/64 = 0.9843 (98.43%)
c) P(X > 2)= 1- P(X ≤ 2) = 1 - 63/64 = 1/64 = 0.015 (1.5%)
d) P(X ≥ 1) = 1 - P(X < 1) = 1 - f(x=0) = 1- 3/4 = 1/4 = 0.25 (25%)
Answer:
The parametrization, of the given curve is 
Step-by-step explanation:
From the question we are given the function

At y= 5


Converting the above to it polar equation we have

To find the equation of this line in slope-intercept form (y = mx + b, where m is its slope and b is its y-intercept), we naturally need the slope and the y-intercept. We can see that the line intersects the y-axis at the point (0, 4) so our y-intercept is 4, and the line rises 4 along the y-axis for every 2 it runs along the x-axis, so its slope is 4/2 = 2. With this in mind, we can write the line's equation as
y = 2x + 4
Hope this helps with the answer to your question:) (sorry I didn't know how to do question 30)