Answer:


Step-by-step explanation:
Given the matrices


Calculating AB:

Multiply the rows of the first matrix by the columns of the second matrix


Hence,

Therefore,


Answer:
D = L/k
Step-by-step explanation:
Since A represents the amount of litter present in grams per square meter as a function of time in years, the net rate of litter present is
dA/dt = in flow - out flow
Since litter falls at a constant rate of L grams per square meter per year, in flow = L
Since litter decays at a constant proportional rate of k per year, the total amount of litter decay per square meter per year is A × k = Ak = out flow
So,
dA/dt = in flow - out flow
dA/dt = L - Ak
Separating the variables, we have
dA/(L - Ak) = dt
Integrating, we have
∫-kdA/-k(L - Ak) = ∫dt
1/k∫-kdA/(L - Ak) = ∫dt
1/k㏑(L - Ak) = t + C
㏑(L - Ak) = kt + kC
㏑(L - Ak) = kt + C' (C' = kC)
taking exponents of both sides, we have

When t = 0, A(0) = 0 (since the forest floor is initially clear)


So, D = R - A =

when t = 0(at initial time), the initial value of D =

C. 130,90,130.
#01234, the tenths number stays the same
#56789, the tenths number go up 1 number
If this were to be put in this form:
the quotient we be on top, or another word the answer. I can't show it on here, but the answer is 165