Answer: D
Step-by-step explanation:
Answer:
Step-by-step explanation:
Left
When a square = a linear, always expand the squared expression.
x^2 - 2x + 1 = 3x - 5 Subtract 3x from both sides
x^2 - 2x - 3x + 1 = -5
x^2 - 5x +1 = - 5 Add 5 to both sides
x^2 - 5x + 1 + 5 = -5 + 5
x^2 - 5x + 6 = 0
This factors
(x - 2)(x - 3)
So one solution is x = 2 and the other is x = 3
Second from the Left
i = sqrt(-1)
i^2 = - 1
i^4 = (i^2)(i^2)
i^4 = - 1 * -1
i^4 = 1
16(i^4) - 8(i^2) + 4
16(1) - 8(-1) + 4
16 + 8 + 4
28
Second from the Right
This one is rather long. I'll get you the equations, you can solve for a and b. Maybe not as long as I think.
12 = 8a + b
<u>17 = 12a + b Subtract</u>
-5 = - 4a
a = - 5/-4 = 1.25
12 = 8*1.25 + b
12 = 10 + b
b = 12 - 10
b = 2
Now they want a + b
a + b = 1.25 + 2 = 3.25
Right
One of the ways to do this is to take out the common factor. You could also expand the square and remove the brackets of (2x - 2). Both will give you the same answer. I think expansion might be easier for you to understand, but the common factor method is shorter.
(2x - 2)^2 = 4x^2 - 8x + 4
4x^2 - 8x + 4 - 2x + 2
4x^2 - 10x + 6 The problem is factoring since neither of the first two equations work.
(2x - 2)(2x - 3) This is correct.
So the answer is D
Combine like terms.
-14cd + 15cd - 15cd = -14cd
-2c²d² + 9c²d² = 7c²d²
7c²d² - 14cd is your answer
hope this helps
Answer:
(See explanation for further details)
Step-by-step explanation:
The expression is transformed into its standard form:



The function does not represent a circle, as radius is a positive number.
well then, the volume of the nose cone will just be the sum of the volume of the cylinder below and the cone above.
since the diameter for both is 8, then their radius is half that, or 4.
![\bf \stackrel{\textit{volume of a cone}}{V=\cfrac{\pi r^2 h}{3}}~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=4\\ h=6 \end{cases}\implies V=\cfrac{\pi (4)^2(6)}{3}\implies V=32\pi \\\\\\ \stackrel{\textit{volume of a cylinder}}{V=\pi r^2 h}~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=4\\ h=6 \end{cases}\implies V=\pi (4)^2(6)\implies V=96\pi \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{volume of the nose cone}}{32\pi +96\pi \implies 128\pi }\qquad \approx \qquad 402.12](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cone%7D%7D%7BV%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%20%5Ccline%7B1-1%7D%20r%3D4%5C%5C%20h%3D6%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%284%29%5E2%286%29%7D%7B3%7D%5Cimplies%20V%3D32%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%7D%7BV%3D%5Cpi%20r%5E2%20h%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%20%5Ccline%7B1-1%7D%20r%3D4%5C%5C%20h%3D6%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Cpi%20%284%29%5E2%286%29%5Cimplies%20V%3D96%5Cpi%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20the%20nose%20cone%7D%7D%7B32%5Cpi%20%2B96%5Cpi%20%5Cimplies%20128%5Cpi%20%7D%5Cqquad%20%5Capprox%20%5Cqquad%20402.12)