Answer:
P(total) = 164 mmHg
Explanation:
Given data:
Partial pressure of helium = 77 mmHg
Partial pressure of nitrogen = 87 mmHg
Total pressure of flask = ?
Solution:
According to Dalton law of partial pressure,
The total pressure inside container is equal to the sum of partial pressures of individual gases present in container.
Mathematical expression:
P(total) = P₁ + P₂ + P₃+ ............+Pₙ
Now we will solve this problem by using this law.
P(total) = P(He) + P(N₂)
P(total) = 77 mmHg + 87 mmHg
P(total) = 164 mmHg
It’s C because the oak trees create a population
Answer:
There are recessive traits and dominant traits
Explanation:
recessive traits are always hidden
dominant traits are the ones that are present in an organism
some recessive traits can be passed on to offsprings to become dominant
and some dominant traits can be passed on to become recessive traits
that's life
Answer:

Explanation:
In this problem we only have information of the equilibrium, so we need to find a expression of the free energy in function of the constant of equilireium (Keq):

Being Keq:
![K_{eq}=\frac{[fructose][Pi]}{[Fructose-1-P]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5Bfructose%5D%5BPi%5D%7D%7B%5BFructose-1-P%5D%7D)
Initial conditions:
![[Fructose-1-P]=0.2M](https://tex.z-dn.net/?f=%5BFructose-1-P%5D%3D0.2M)
![[Fructose]=0M](https://tex.z-dn.net/?f=%5BFructose%5D%3D0M)
![[Pi]=0M](https://tex.z-dn.net/?f=%5BPi%5D%3D0M)
Equilibrium conditions:
![[Fructose-1-P]=6.52*10^{-5}M](https://tex.z-dn.net/?f=%5BFructose-1-P%5D%3D6.52%2A10%5E%7B-5%7DM)
![[Fructose]=0.2M-6.52*10^{-5}M](https://tex.z-dn.net/?f=%5BFructose%5D%3D0.2M-6.52%2A10%5E%7B-5%7DM)
![[Pi]=0.2M-6.52*10^{-5}M](https://tex.z-dn.net/?f=%5BPi%5D%3D0.2M-6.52%2A10%5E%7B-5%7DM)


Free-energy for T=298K (standard):


Answer:
not sure o. increasing pressure and decreasing temperature