The solution would be like this for this specific problem:
<span>Given:
H2 = </span><span>2.6 atm
CL2 = 3.14 atm</span>
<span>
pressure H2 = 2.6 - x
pressure Cl2 = 3.14 - x
<span>pressure HBr = 2x = 1.13
x = 1.13 / 2 = 0.565
<span>pressure H2 = 2.6 - 0.565 = 2.035
pressure Br2 = 3.14 - 0.565 = 2.575
Kp = (1.13)^2 / 2.035 x 2.575</span></span></span>
= 1.2769 / (5.240125)
= 0.24367739319195629875241525726963
= 0.244
<span>Therefore, the Kp for the reaction at the given temperature
is 0.244.
To add, </span>the hypothetical pressure of a gas if
it alone occupied the whole volume of the original mixture at the same
temperature is called the partial pressure or Kp.
The amount of carbon in fossils and artifacts decreases when the get older, so you can find out how old an object or fossil is by finding out how much carbon is in it.
Answer:
answer is 0.001168 is correct
Answer:
62.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2C₈H₁₈ + 25O₂ —> 16CO₂ + 18H₂O
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Finally, we shall determine the number of mole of O₂ needed to react with 5 moles of C₈H₁₈. This can be obtained as shown below:
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Therefore, 5 moles of C₈H₁₈ will react with = (5 × 25) / 2 = 62.5 moles of O₂.
Thus, 62.5 moles of O₂ is needed for the reaction.