Answer:
The equation to show the the correct form to show the standard molar enthalpy of formation:

Explanation:
The standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states.
Given, that 1 mole of
gas and 1 mole of
liquid gives 2 moles of HBr gas as a product.The reaction releases 72.58 kJ of heat.

Divide the equation by 2.

The equation to show the the correct form to show the standard molar enthalpy of formation:

An altered state of consciousness can be defined as any state of consciousness that deviates from normal waking consciousness, in terms of marked differences in our level of awareness, perceptions, memories, thinking, emotions, behaviours and sense of time, place and self-control.
Read more on Brainly.com -
brainly.com/question/14823138#readmore
Answer is 0.1565417867........