Answer:
ΔG <0 , ΔH > 0 , ΔS > 0 .
Explanation:
From the data given in question , the reaction is a spontaneous process , hence , the value of change in gibbs free energy would be negative , ΔG <0
And , on dissolution process , the temperature of the water decreases , i.e. , it is an endothermic process , i.e. , the change in enthalphy value is positive , ΔH > 0
And , during the process of dissolution , the ammonia salt break does to ions , i.e. , the randomness increases , hence the ΔS > 0
I would say the answer is C
The correct option is C.
A Lewis dot diagram is a representation of the valence electron of an atom, which uses dot around the symbol of the atom. Chlorine has seven electrons in its outermost shell, these seven electrons are arranged in form of dot around the atom of chlorine. If you count the number of dot given in option C, you will notice that they are seven.
Answer:
3. 3.45×10¯¹⁸ J.
4. 1.25×10¹⁵ Hz.
Explanation:
3. Determination of the energy of the photon.
Frequency (v) = 5.2×10¹⁵ Hz
Planck's constant (h) = 6.626×10¯³⁴ Js
Energy (E) =?
The energy of the photon can be obtained by using the following formula:
E = hv
E = 6.626×10¯³⁴ × 5.2×10¹⁵
E = 3.45×10¯¹⁸ J
Thus, the energy of the photon is 3.45×10¯¹⁸ J
4. Determination of the frequency of the radiation.
Wavelength (λ) = 2.4×10¯⁵ cm
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
Next, we shall convert 2.4×10¯⁵ cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
2.4×10¯⁵ cm = 2.4×10¯⁵ cm × 1 m /100 cm
2.4×10¯⁵ cm = 2.4×10¯⁷ m
Thus, 2.4×10¯⁵ cm is equivalent to 2.4×10¯⁷ m
Finally, we shall determine the frequency of the radiation by using the following formula as illustrated below:
Wavelength (λ) = 2.4×10¯⁷ m
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
v = c / λ
v = 3×10⁸ / 2.4×10¯⁷
v = 1.25×10¹⁵ Hz
Thus, the frequency of the radiation is 1.25×10¹⁵ Hz.