Answer:
70 dolls
Step-by-step explanation:
Hello!
The ratio is 5:2, which are division of a whole. They can be represented as 5x and 2x.
Jacky has 5x dolls, and Peter has 2x dolls. They were equal after subtracting 15 dolls from 5x and adding them to 2x.
Equation:
Solve:
- 5x - 15 = 2x + 15
- 5x - 30 = 2x
- 5x = 2x + 30
- 3x = 30
- x = 10
So Jacky has 5(10) dolls, or 50 dolls, and Peter has 2(10) or 20 dolls.
The total sum is 70 dolls.
Answer:
![280](https://tex.z-dn.net/?f=280)
Step-by-step explanation:
All you have to do is multiply 35 by 8 to get 280.
I am joyous to assist you anytime.
Answer:
2. 3.913 kg (3 dp)
3. light cream
4. 240 CoffeeStops
5. 7 CoffeeStops per square mile
6. 2,861 cups of coffee each day
Step-by-step explanation:
Given:
- Skim milk density at 20 °C = 1.033 kg/l
- Light cream density at 20 °C = 1.012 kg/l
- 1 liter = 0.264 gallons
<u>Question 2</u>
![\begin{aligned}\textsf{1 gallon} & = \sf \dfrac{1}{0.264}\:liters\\\\\implies \textsf{Mass (1 gallon of skim milk)} & = \sf Density \times Volume\\& = \sf 1.033\:kg/l \times \dfrac{1}{0.264}\:l\\& = \sf 3.913\:kg\:(3\:dp)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Ctextsf%7B1%20gallon%7D%20%26%20%3D%20%5Csf%20%5Cdfrac%7B1%7D%7B0.264%7D%5C%3Aliters%5C%5C%5C%5C%5Cimplies%20%5Ctextsf%7BMass%20%281%20gallon%20of%20skim%20milk%29%7D%20%26%20%3D%20%5Csf%20Density%20%5Ctimes%20Volume%5C%5C%26%20%3D%20%5Csf%201.033%5C%3Akg%2Fl%20%5Ctimes%20%5Cdfrac%7B1%7D%7B0.264%7D%5C%3Al%5C%5C%26%20%3D%20%5Csf%203.913%5C%3Akg%5C%3A%283%5C%3Adp%29%5Cend%7Baligned%7D)
Therefore, the mass of 1 gallon of skim milk is 3.913 kg (3 dp)
---------------------------------------------------------------------------------------------
<u>Question 3</u>
Given:
- Volume of liquid = 9 liters
- Mass of liquid = 9.108 kg
![\begin{aligned}\implies \sf Density & = \sf \dfrac{Mass}{Volume}\\\\& = \sf \dfrac{9.108\:kg}{9\:l}\\\\& = \sf 1.012\:kg/l \end{alilgned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cimplies%20%5Csf%20Density%20%26%20%3D%20%5Csf%20%5Cdfrac%7BMass%7D%7BVolume%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%20%5Cdfrac%7B9.108%5C%3Akg%7D%7B9%5C%3Al%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%201.012%5C%3Akg%2Fl%20%5Cend%7Balilgned%7D)
Therefore, the container holds light cream.
---------------------------------------------------------------------------------------------
<u>Question 4</u>
Given:
- 15 CoffeeStops per 100,000 people
- Population of Manhattan ≈ 1,602,000 people
![\begin{aligned}\implies \textsf{Number of Coffeestops} & = \sf \dfrac{population}{density}\\\\& = \sf \dfrac{1,602,000}{100,000/15}\\\\& = \sf \dfrac{1,602,000}{100,000} \times 15\\\\& = \sf 240.3\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cimplies%20%5Ctextsf%7BNumber%20of%20Coffeestops%7D%20%26%20%3D%20%5Csf%20%5Cdfrac%7Bpopulation%7D%7Bdensity%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%20%5Cdfrac%7B1%2C602%2C000%7D%7B100%2C000%2F15%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%20%5Cdfrac%7B1%2C602%2C000%7D%7B100%2C000%7D%20%5Ctimes%2015%5C%5C%5C%5C%26%20%3D%20%5Csf%20240.3%5Cend%7Baligned%7D)
Therefore, there are 240 CoffeeStops.
---------------------------------------------------------------------------------------------
<u>Question 5</u>
Given
- Manhattan ≈ 34 square miles
![\begin{aligned}\implies \textsf{CoffeeStops density} & = \sf \dfrac{number\:of\:stores}{land\:area}\\\\& = \sf \dfrac{240}{34}\\\\& \approx \sf 7 \: \textsf{CoffeeStops per square mile}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cimplies%20%5Ctextsf%7BCoffeeStops%20density%7D%20%26%20%3D%20%5Csf%20%5Cdfrac%7Bnumber%5C%3Aof%5C%3Astores%7D%7Bland%5C%3Aarea%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%20%5Cdfrac%7B240%7D%7B34%7D%5C%5C%5C%5C%26%20%5Capprox%20%5Csf%207%20%5C%3A%20%5Ctextsf%7BCoffeeStops%20per%20square%20mile%7D%5Cend%7Baligned%7D)
Therefore, the density of CoffeeStops is 7 per square mile.
---------------------------------------------------------------------------------------------
<u>Question 6</u>
Given:
- Each person buys 3 cups of coffee per week
![\begin{aligned}\implies \textsf{Cups served each week} & = \textsf{number of people} \times \textsf{number of cups per week}\\& = \sf 1,602,000 \times 3\\& = \sf 4,806,000\: \textsf{cups per week}\\\\\implies \textsf{Cups per day} & = \sf \dfrac{\textsf{cups per week}}{\textsf{days in a week}}\\\\& = \sf \dfrac{4,806,000}{7}\\\\& = \sf 686,571\:\textsf{(nearest whole number)}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cimplies%20%5Ctextsf%7BCups%20served%20each%20week%7D%20%26%20%3D%20%5Ctextsf%7Bnumber%20of%20people%7D%20%5Ctimes%20%5Ctextsf%7Bnumber%20of%20cups%20per%20week%7D%5C%5C%26%20%3D%20%5Csf%201%2C602%2C000%20%5Ctimes%203%5C%5C%26%20%3D%20%5Csf%204%2C806%2C000%5C%3A%20%5Ctextsf%7Bcups%20per%20week%7D%5C%5C%5C%5C%5Cimplies%20%5Ctextsf%7BCups%20per%20day%7D%20%26%20%3D%20%5Csf%20%5Cdfrac%7B%5Ctextsf%7Bcups%20per%20week%7D%7D%7B%5Ctextsf%7Bdays%20in%20a%20week%7D%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%20%5Cdfrac%7B4%2C806%2C000%7D%7B7%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%20686%2C571%5C%3A%5Ctextsf%7B%28nearest%20whole%20number%29%7D%5Cend%7Baligned%7D)
![\begin{aligned}\implies \textsf{Cups served per day per shop} & = \dfrac{\textsf{cups per day}}{\textsf{number of shops}}\\\\& = \sf \dfrac{686,571}{240}\\\\& = \sf 2,861\: \textsf{(nearest whole number)} \end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cimplies%20%5Ctextsf%7BCups%20served%20per%20day%20per%20shop%7D%20%26%20%3D%20%5Cdfrac%7B%5Ctextsf%7Bcups%20per%20day%7D%7D%7B%5Ctextsf%7Bnumber%20of%20shops%7D%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%20%5Cdfrac%7B686%2C571%7D%7B240%7D%5C%5C%5C%5C%26%20%3D%20%5Csf%202%2C861%5C%3A%20%5Ctextsf%7B%28nearest%20whole%20number%29%7D%20%5Cend%7Baligned%7D)
Therefore, each Manhattan CoffeeStop serves approximately 2,861 cups of coffee each day.
Answer:
96
Step-by-step explanation:
given: ![Ac=\frac{vt2}r \quad vt=2 \quad r=2](https://tex.z-dn.net/?f=%20Ac%3D%5Cfrac%7Bvt2%7Dr%20%5Cquad%20vt%3D2%20%5Cquad%20r%3D2)
$\therefore Ac=\frac{(2)2}{2}=2$