1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
4 years ago
10

The polynomial 8x2 – 8x + 2 – 5 + x is simplified to 8x2 – gx – h. What are the value of g and h?

Mathematics
1 answer:
docker41 [41]4 years ago
3 0

Answer:

Step-by-step explanation:

8x^2 - 8x + 2 - 5 + x.....combine like terms

8x^2 - 7x - 3 <=== g = 7 and h = 3

You might be interested in
What is the vertex of the parabola given by = -(x-2)^2-1?
weqwewe [10]
Rewrite the parabola in standard form and use this formula to find the vertex (h,k).
= (2,-1)

3 0
3 years ago
(I WILL GIVE BRAINILEST AND 35 POINTS!)Calculate the Volume of the prism by first finding the total number of half-unit cubes th
vazorg [7]

Answer: the answer is “B”

Step-by-step explanation: answer is LETTER B

7 0
3 years ago
Solve for Z.<br> 3z - 12 =48
marysya [2.9K]

Answer:

Z = 20

Step-by-step explanation:

3 x 20 = 60

60 - 12 = 48

4 0
3 years ago
Read 2 more answers
What is Greater 980 squared root or 4π^2
Rudik [331]

Answer:

The greater number is 4π^2.

Step-by-step explanation:

1) 4π^2 = 39.4784176044

2) \sqrt{980} = 31.304951685

4π^2 is greater.

7 0
4 years ago
Read 2 more answers
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
Other questions:
  • A dice is rolled 4 times. What is the probability of showing a 6 on every roll?
    9·1 answer
  • Please Help I have 5 minutes to do this!
    5·1 answer
  • Determine if the values in the table are proportional yes or no
    7·1 answer
  • Please answer correctly !!!!!!!!!!!!!!!!!! Will mark brainliest answer !!!!!!!!!!!!!!!!!!!!!
    7·1 answer
  • 4.
    7·1 answer
  • A boy is flying a kite and has let out 300 feet of string. He notices that the angle the string makes with the ground is 38 degr
    6·1 answer
  • Raju is cycling at a speed of 30km/h. He applies brakes and stops at a junction in 10s. Calculate the acceleration.
    15·1 answer
  • PLEASE HELP I NEED THIS ASAP (I hate math)
    12·1 answer
  • You buy a car in 2017 for $25,000. The value decreases by 16% each year. How much will the car be worth in 2022? Round your answ
    9·1 answer
  • Which ordered pair is a solution of y= 2x + 5?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!