<h2>
Answer: U-238</h2>
Explanation:
Let's begin by explaining that for radioactive geological dating (also called radioisotope dating) in which radioactive impurities were selectively incorporated when the fossil materials were formed, it is very useful to compare it with a naturally occurring radioisotope having a known half-life.
Now, taking into account that the <u>fossils are millions and millions of years old, radioisotopes are needed that exceed this measure.
</u>
To understand it better:
The longer the half-life of a radioisotope, the greater its utility for estimating fossil ages or geological formations.
In this sense, uranium-238 (U238) has a half-life of 4,470 million years, therefore, it is among the most commonly used radioisotopes for fossil and geological dating.
Answer:
1. Lateral inversion is a phenomenon in which left appears to be right and vice versa. It is due to direction that light follows when it strikes a reflecting surface, generally a mirror.
These are the letters which don't show lateral inversion A,H,O,T,U
2. USES OF CONCAVE MIRROR
They are used as shaving mirrors to see a larger image of the face.
Dentists use concave mirrors to view large images of the teeth of the patients.
USES OF CONVEX MIRROR
It is is used as a rear view mirror in vehicles.
It is used as a vigilance mirror.
Answer: The first answer for the first problem, and the 2nd answer for the second problem
Explanation: For the first one, if it is absolute zero, the molecules would not move at all.
For the second one, the temperature of the sample will increase due to the movement.
Answer:
a
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
b
Explanation:
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
When
we have that

=> 
=>