It acts in the upward direction.
The area-
The area under the line in a velocity-time graph represents the distance travelled. To find the distance travelled in the graph above, we need to find the area of the light-blue triangle and the dark-blue rectangle.
<span><span>Area of light-blue triangle -
<span>The width of the triangle is 4 seconds and the height is 8 meters per second. To find the area, you use the equation: <span>area of triangle = 1⁄2 × base × height </span><span>so the area of the light-blue triangle is 1⁄2 × 8 × 4 = 16m. </span></span></span><span> Area of dark-blue rectangle
The width of the rectangle is 6 seconds and the height is 8 meters per second. So the area is 8 × 6 = 48m.</span><span> Area under the whole graph
<span>The area of the light-blue triangle plus the area of the dark-blue rectangle is:16 + 48 = 64m.<span>This is the total area under the distance-time graph. This area represents the distance covered.</span></span></span></span>
A persons or animals nature, especially as it permanently affects their behavior
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.
The work-energy theorem explains the idea that the net work - the total work done by all the forces combined - done on an object is equal to the change in the kinetic energy of the object. After the net force is removed (no more work is being done) the object's total energy is altered as a result of the work that was done.
This idea is expressed in the following equation:
is the total work done
is the change in kinetic energy
is the final kinetic energy
is the initial kinetic energy
mark me as brainliest ❤️