Answer:
λ = 5.65m
Explanation:
The Path Difference Condition is given as:
δ=
;
where lamda is represent by the symbol (λ) and is the wavelength we are meant to calculate.
m = no of openings which is 2
∴δ= 
n is the index of refraction of the medium in which the wave is traveling
To find δ we have;
δ= 
δ= 
δ= 
δ= 
δ= 
δ= 
δ= 82.15 -73.68
δ= 8.47
Again remember; to calculate the wavelength of the ocean waves; we have:
δ= 
δ= 8.47
8.47 = 
λ = 
λ = 5.65m
Stark contrast to paths on energy surfaces or even mechanistic reactions, rule-based and inductive computational approaches to reaction prediction mostly consider only overall transformations. Overall transformations are general molecular graph rearrangements reflecting only the net change of several successive mechanistic reactions. For example, Figure 1 shows the overall transformation of an alkene interacting with hydrobromic acid to yield the alkyl bromide along with the two elementary reactions which compose the transformation.
<h2>
Spring constant is 14.72 N/m</h2>
Explanation:
We have for a spring
Force = Spring constant x Elongation
F = kx
Here force is weight of mass
F = W = mg = 0.54 x 9.81 = 5.3 N
Elongation, x = 36 cm = 0.36 m
Substituting
F = kx
5.3 = k x 0.36
k = 14.72 N/m
Spring constant is 14.72 N/m
Answer:
(A) Consists of a small number of tiny particles that are far apart- relative in their size.
Explanation:
An <em>ideal gas</em> is defined as a simplification of a real gas, with punctual particles, in which all collisions are elastic, with random displacements and with no attractive force between them.
The assumption of the particles being punctual make clear that they do not have size at all. So if they were far apart-relative in their size, they can not collide each other, that is why assumption (B) can not be possible (<u><em>for that particular case</em></u>).
It is clear that (A) is not an assumption for an ideal gas, because do not fit in any of its properties.
Elastic collision: It is a case in which the energy is conserved (Kinetic Energy).
Kinetic Energy: It is the energy that will have an object as a consequence of its movement.