1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
5

20 Points Can anyone help me with these Geometry questions? Will give Brainliest.

Mathematics
1 answer:
Tom [10]3 years ago
4 0

Answer:

give brain list first

Step-by-step explanation:

You might be interested in
PLEASE HELP!! 48 POINTS!!
Likurg_2 [28]
The exact number is 121.966019, so if you round to the nearest whole number, the answer is 122.
4 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Area of kite how to now
vova2212 [387]

Area of kite = p q / 2... this is formula

7 0
3 years ago
The ratio of rabbits to guinea pigs in a shop is 2:7.
Tanzania [10]

Answer:

b po

Step-by-step explanation:

sana po matulong po ako

3 0
3 years ago
Make a list of a graduation toolkit.
amid [387]
U need,scissors,pencils,erasers,papers,books,and other types of things
6 0
3 years ago
Read 2 more answers
Other questions:
  • Sarah drove for 39 miles with an average speed of 40 miles per hour. What amount of time was she driving for?
    13·1 answer
  • Eight less than the quotient of a number and 3 is 18. Which equation models this sentence?
    14·2 answers
  • The value of a bike depreciates by 55% per year. Work out the current value of a bike bought 2 years ago for £1300.
    8·1 answer
  • Identify a1 r and n for the sum of the geometric sequence. 1/2 + 3/8 + 9/32 + 27/128 + 81/512
    10·2 answers
  • Which of the following is the solution to |x-1|=8
    5·2 answers
  • Carlos is arranging books on shelves. He has 56 novels and 16 autobiographies. Each shelf will have the
    14·1 answer
  • What is <br><img src="https://tex.z-dn.net/?f=f%28x%29%20%3D%202x%20-%203" id="TexFormula1" title="f(x) = 2x - 3" alt="f(x) = 2x
    10·1 answer
  • ?
    15·1 answer
  • Pls help!! need asap for 40 pts
    13·1 answer
  • Someone, please help! I'm really confused
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!