I remember this from a week ago. The answer was topex/poseidon
(E) ionic aluminum fluoride (AlF3)
When studying atoms, scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
Explanation:
Scientists can ignore the gravitational force because the gravitational force is considered to be negligible as compared to the other forces due to its smaller value.We all know that the gravitational force is directly proportional to the mass of an object which result in a small force value.When the value of this small force is compared to the value of the electrical force between protons and electrons in atoms the we can say that the electrical force is million times stronger than the gravitational force
Thus we can say that scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
The reaction is an exothermic one because heat is released to the surroundings. An exothermic reaction is a chemical reaction where energy is being released as the reaction by light or heat. On the other hand, endothermic reaction needs energy input for the reaction to proceed.