Answer:
(0,-2)
Step-by-step explanation:
First we find the equation of the line passes through
and
.
The slope of the line is

So by the point slope formula the equation of the line is

When
we have
.
Therefore the line joining the two points cuts the y-axis at (0,-2).
Answer:
y = (x/(1-x))√(1-x²)
Step-by-step explanation:
The equation can be translated to rectangular coordinates by using the relationships between polar and rectangular coordinates:
x = r·cos(θ)
y = r·sin(θ)
x² +y² = r²
__
r = sec(θ) -2cos(θ)
r·cos(θ) = 1 -2cos(θ)² . . . . . . . . multiply by cos(θ)
r²·r·cos(θ) = r² -2r²·cos(θ)² . . . multiply by r²
(x² +y²)x = x² +y² -2x² . . . . . . . substitute rectangular relations
x²(x +1) = y²(1 -x) . . . . . . . . . . . subtract xy²-x², factor
y² = x²(1 +x)/(1 -x) = x²(1 -x²)/(1 -x)² . . . . multiply by (1-x)/(1-x)

__
The attached graph shows the equivalence of the polar and rectangular forms.
it is a rational number (intergers are plus and minus whole numbers)
Answer:
<u>The answer is...</u>
<u />
<u />
<u />
<u />
Hopefully, this helps you!!

Answer:
u need to give more points for thouse kind of questions
Step-by-step explanation: