Answer:
Option D : t = 5s + s/2 is the correct answer.
Step-by-step explanation:
Given that:
t = Combined weight of water and food
s = weight of the snail
Water drank by snail = 5s
Food ate by snail = s/2
Combined weight = Weight of water + Food
t = 5s + s/2
Hence,
Option D : t = 5s + s/2 is the correct answer.
6
4
4
12
3
4
I can't read the last one, sorry.
The equation of a circle in standard form is

where (h, k) is the center of the circle, and r is the radius if the circle.
We need to find the radius and center of the circle.
We are given a diameter, so to find the center, we need the midpoint of the diameter.
M = ((-6 + 6)/2, (6 + (-2))/2) = (0, 2)
The center is (0, 2).
To find the radius, we find the length of the given diameter and divided by 2.





Answer:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
Step-by-step explanation:
1) We set up our null and alternative hypothesis as
H0: proportion of fatal bicycle accidents in 2015 was the same for all days of the week
against the claim
Ha: proportion of fatal bicycle accidents in 2015 was not the same for all days of the week
2) the significance level alpha is set at 0.05
3) the test statistic under H0 is
χ²= ∑ (ni - npi)²/ npi
which has an approximate chi square distribution with ( n-1)=7-1= 6 d.f
4) The critical region is χ² ≥ χ² (0.05)6 = 12.59
5) Calculations:
χ²= ∑ (16- 14.28)²/14.28 + (12- 14.28)²/14.28 + (12- 14.28)²/14.28 + (13- 14.28)²/14.28 + (14- 14.28)²/14.28 + (15- 14.28)²/14.28 + (18- 14.28)²/14.28
χ²= 1/14.28 [ 2.938+ 5.1984 +5.1984+1.6384+0.0784 +1.6384+13.84]
χ²= 1/14.28[8.1364]
χ²= 0.569= 0.57
6) Conclusion:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
b.<u> It is r</u>easonable to conclude that the proportion of fatal bicycle accidents in 2015 was the same for all days of the week