Explain which properties you would use to fully expand (the problem in the screenshot)
1 answer:
Answer:
Firs property used : Quotient Property

![log_b(\frac{\sqrt[3]{x} }{36y^2} ) = log_b(\sqrt[3]{x}) - log_b(36y^2)](https://tex.z-dn.net/?f=log_b%28%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%20%7D%7B36y%5E2%7D%20%29%20%3D%20log_b%28%5Csqrt%5B3%5D%7Bx%7D%29%20-%20log_b%2836y%5E2%29)
Second property used : Product Property
![log_b(\sqrt[3]{x}) - log_b(36y^2) = (log_b(\sqrt[3]{x}) - [log_b36 + log_by^2)](https://tex.z-dn.net/?f=log_b%28%5Csqrt%5B3%5D%7Bx%7D%29%20-%20log_b%2836y%5E2%29%20%3D%20%28log_b%28%5Csqrt%5B3%5D%7Bx%7D%29%20-%20%5Blog_b36%20%2B%20log_by%5E2%29)
Third property used : Power Property
![log_b \sqrt[n]{X} = log_b(X)^{\frac{1}{n}} = \frac{1}{n} log_b X](https://tex.z-dn.net/?f=log_b%20%5Csqrt%5Bn%5D%7BX%7D%20%3D%20log_b%28X%29%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%20log_b%20X)
![(log_b(\sqrt[3]{x}) - [log_b6^2 + log_by^2) = \frac{1}{3} log_bx - 2log_b 6 - 2log_by](https://tex.z-dn.net/?f=%28log_b%28%5Csqrt%5B3%5D%7Bx%7D%29%20-%20%5Blog_b6%5E2%20%2B%20log_by%5E2%29%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20log_bx%20-%202log_b%206%20-%202log_by)
Fully expanded form:
![log_b(\frac{\sqrt[3]{x} }{36y^2} ) = \frac{1}{3} log_b x-2log_b6-2log_by](https://tex.z-dn.net/?f=log_b%28%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%20%7D%7B36y%5E2%7D%20%29%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20log_b%20x-2log_b6-2log_by)
You might be interested in
Answer:
y=7x-4
Step-by-step explanation:
when you put the other equation into y=mx+b form, it has a negative slope
Answer:
quadrant 2
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
Answer:
linear
Step-by-step explanation:
-8x-2y=-24
-2y=-24+8x
2y=24-8x
Y=12-4x
Y=-4x+12