It will suspended up to 5 to 10 or years.
Answer:
Explanation:
In the income statement, the total revenues and the total expenses are recorded.
If the total revenues are more than the total expenditure then the company earns net income
And, If the total revenues are less than the total expenditure then the company have a net loss
This net income or net loss would reflect in the statement of the retained earning account.
The preparation of the income statement is presented in the spreadsheet. Kindly find the attachment below:
Go to the stock market holders, or look it up online
Hope this helps!
Answer:
Debit side $29,660
Credit side $29,660
Explanation:
Preparation of a correct trial balance
DOMINIC COMPANY
Corrected Trial Balance May 31, 2015
DEBIT SIDE
Cash $5,023
($5,050 +$450 - $477)
($530-$53=$477)
Accounts Receivable $2,030
($2,570 - $540)
Prepaid Insurance $930
($830 + $100)
Supplies $450
Equipment $12,750
($13,200 - $450)
Salaries and Wages Expense $4,530
($4,330 + $200)
Advertising Expense $1,447
($970 + $477)
($530-$53=$477)
Utilities Expense $900
($800 + $100)
Dividends $1,600
TOTAL $29,660
CREDIT SIDE
Accounts Payable $5,510
($5,700 - $100 + $450 - $540)
Unearned Service Revenue $690
Common Stock $14,500
($12,900 + $1,600)
Service Revenue $8,960
TOTAL $29,660
Therefore the CORRECTED TRIAL BALANCE will be:
Debit side $29,660
Credit side $29,660
The statement that holds true for the American Option is (A) Put-call parity provides an upper and lower bound for the difference between call and put prices
Explanation:
According to the Put-call parity concept when we hold the short European put and long European call of similar class the return delivered is same as holding one forward contract of the same underlying asset, that has the same expiration, forward price and which is equal to the strike price of the option
In financial management put–call parity concept is used to define the relationship that exist between the price of a European call option and European put option, and both of them have identical strike price and expiry
The formula used for calculating put call parity is
c + k = f +p
where (c) call price plus the (k) strike price of both options is equal to the futures price(f) plus the put price(p)