MS should equal the same thing since M is the midpoint. Than you would add RM and MS to get RS
General Idea:
(i) Assign variable for the unknown that we need to find
(ii) Sketch a diagram to help us visualize the problem
(iii) Write the mathematical equation representing the description given.
(iv) Solve the equation by substitution method. Solving means finding the values of the variables which will make both the equation TRUE
Applying the concept:
Given: x represents the length of the pen and y represents the area of the doghouse
<u>Statement 1: </u>"The pen is 3 feet wider than it is long"
![Length \; of\; the \; pen = x\\ Width \; of\; the\; pen=x+3](https://tex.z-dn.net/?f=%20Length%20%5C%3B%20of%5C%3B%20the%20%5C%3B%20pen%20%3D%20x%5C%5C%20Width%20%5C%3B%20of%5C%3B%20the%5C%3B%20pen%3Dx%2B3%20)
------
<u>Statement 2: "He also built a doghouse to put in the pen which has a perimeter that is equal to the area of its base"</u>
![Area \; of\; the\; Dog \; house=y\\ Perimeter \; of\; Dog\; house=y](https://tex.z-dn.net/?f=%20Area%20%5C%3B%20of%5C%3B%20the%5C%3B%20Dog%20%5C%3B%20house%3Dy%5C%5C%20Perimeter%20%5C%3B%20of%5C%3B%20Dog%5C%3B%20house%3Dy%20)
------
<u>Statement 3: "After putting the doghouse in the pen, he calculates that the dog will have 178 square feet of space to run around inside the pen."</u>
![Area \; of \; the\; Pen - Area \;of \;the\;Dog \;House=\;Space\;inside\;Pen\\ \\ x \cdot (x+3)-y=178\\ Distributing \;x\;in\;the\;left\;side\;of\;the\;equation\\ \\ x^2+3x-y=178\Rightarrow\; 1^{st}\; Equation\\](https://tex.z-dn.net/?f=%20Area%20%5C%3B%20of%20%5C%3B%20the%5C%3B%20Pen%20-%20Area%20%5C%3Bof%20%5C%3Bthe%5C%3BDog%20%5C%3BHouse%3D%5C%3BSpace%5C%3Binside%5C%3BPen%5C%5C%20%5C%5C%20x%20%5Ccdot%20%28x%2B3%29-y%3D178%5C%5C%20Distributing%20%5C%3Bx%5C%3Bin%5C%3Bthe%5C%3Bleft%5C%3Bside%5C%3Bof%5C%3Bthe%5C%3Bequation%5C%5C%20%5C%5C%20x%5E2%2B3x-y%3D178%5CRightarrow%5C%3B%201%5E%7Bst%7D%5C%3B%20Equation%5C%5C%20%20)
------
<u>Statement 4: "The perimeter of the pen is 3 times greater than the perimeter of the doghouse."</u>
![Perimeter\; of\; the\; Pen=3\; \cdot \; Perimeter\; of\; the\; Dog\; House\\ \\ 2(x \; + \; x+3)=3 \cdot y\\ Combine\; like\; terms\; inside\; the\; parenthesis\\ \\ 2(2x+3)=3y\\ Distribute\; 2\; in\; the\; left\; side\; of\; the\; equation\\ \\ 4x+6=3y\\ Subtract \; 6\; and \; 3y\; on\; both\; sides\; of\; the\; equation\\ \\ 4x+6-3y-6=3y-3y-6\\ Combine\; like\; terms\\ \\ 4x-3y=-6 \Rightarrow \; \; 2^{nd}\; Equation\\](https://tex.z-dn.net/?f=%20Perimeter%5C%3B%20of%5C%3B%20the%5C%3B%20Pen%3D3%5C%3B%20%5Ccdot%20%5C%3B%20Perimeter%5C%3B%20of%5C%3B%20the%5C%3B%20Dog%5C%3B%20House%5C%5C%20%5C%5C%202%28x%20%5C%3B%20%2B%20%5C%3B%20x%2B3%29%3D3%20%5Ccdot%20y%5C%5C%20Combine%5C%3B%20like%5C%3B%20terms%5C%3B%20inside%5C%3B%20the%5C%3B%20parenthesis%5C%5C%20%5C%5C%202%282x%2B3%29%3D3y%5C%5C%20Distribute%5C%3B%202%5C%3B%20in%5C%3B%20the%5C%3B%20left%5C%3B%20side%5C%3B%20of%5C%3B%20the%5C%3B%20equation%5C%5C%20%5C%5C%204x%2B6%3D3y%5C%5C%20Subtract%20%5C%3B%206%5C%3B%20and%20%5C%3B%203y%5C%3B%20on%5C%3B%20both%5C%3B%20sides%5C%3B%20of%5C%3B%20the%5C%3B%20equation%5C%5C%20%5C%5C%204x%2B6-3y-6%3D3y-3y-6%5C%5C%20Combine%5C%3B%20like%5C%3B%20terms%5C%5C%20%5C%5C%204x-3y%3D-6%20%5CRightarrow%20%5C%3B%20%5C%3B%202%5E%7Bnd%7D%5C%3B%20Equation%5C%5C%20%20)
Conclusion:
The systems of equations that can be used to determine the length and width of the pen and the area of the doghouse is given in Option B.
![178=x^2+3x-y\\ \\ -6=4x-3y](https://tex.z-dn.net/?f=%20178%3Dx%5E2%2B3x-y%5C%5C%20%5C%5C%20-6%3D4x-3y%20)
It’s the imaginary number i. Remember that rule. Hope this helps
hhshshshhshshhshshshshshshshdjgjkkhdgtkdhdtukkfyitlfikdgjkdturuidturkurykiktduktdukdtutduiidtuidtuidtuuidt
The possible values of x for the following functions are values on real number except 0 and 1
<h3>Domain of a function</h3>
The domain of a function are the values of the independent variable for which it exists.
Given the function below
f(x)=2-x/x(x-1)
The function does not exist at the. point where the denominator is zero. From the function given, the function does not exist when;
x(x -1) = 0
x = 0 and x = 1
Hence the possible values of x for the following functions are values on real number except 0 and 1
Learn more on domain of a function here; brainly.com/question/1770447
#SPJ1