Answer:
$6.75
Step-by-step explanation:
3.50 ÷ 10% = 3.15
3.50 + 3.15 = 6.75
Answer:
C
Step-by-step explanation:
It makes sense
Answer:
n=-2,A
Step-by-step explanation:
15-3n=21
-3n=21-15
-3n=6
n=6/-3
=-2
Answer:
To satisfy the hypotheses of the Mean Value Theorem a function must be continuous in the closed interval and differentiable in the open interval.
Step-by-step explanation:
As f(x)=2x3−3x+1 is a polynomial, it is continuous and has continuous derivatives of all orders for all real x, so it certainly satisfies the hypotheses of the theorem.
To find the value of c, calculate the derivative of f(x) and state the equality of the Mean Value Theorem:
dfdx=4x−3
f(b)−f(a)b−a=f'(c)
f(x)x=0=1
f(x)x=2=3
Hence:
3−12=4c−3
and c=1.
Answer:
(1 cm)cos3πt
Step-by-step explanation:
Since the piston starts at its maximal height and returns to its maximal height three times evert 2 seconds, it is modelled by a cosine functions, since a cosine function starts at its maximum point. So, its height h = Acos2πft
where A = amplitude of the oscillation and f = frequency of oscillation and t = time of propagation of oscillation.
Now, since the piston rises in such a way that it returns to the maximal height three times every two seconds, its frequency, f = number of oscillations/time taken for oscillation where number of oscillations = 3 and time taken for oscillations = 2 s
So, f = 3/2 s =1.5 /s = 1.5 Hz
Also, since the the piston moves between 3 cm and 5 cm, the distance between its maximum displacement(crest) of 5 cm and minimum displacement(trough) of 3 cm is H = 5 cm - 3 cm = 2 cm. So its amplitude, A = H/2 = 2 cm/2 = 1 cm
h = Acos2πft
= (1 cm)cos2π(1.5Hz)t
= (1 cm)cos3πt