True because energy can change its speed because of temperature and also its direction
Given that : d = 5sin(pi t/4), So, maximum displacement, d = 5*(+1) = 5 Also, maximum displacement, d = 5*(-1) = -5
Answer:
about 602 milliseconds
Explanation:
The motion can be approximated by the equation ...
y = -4.9t^2 -22.8t +15.5
where t is the time since the arrow was released, and y is the distance above the ground.
When y=0, the arrow has hit the ground.
Using the quadratic formula, we find ...
t = (-(-22.8) ± √((-22.8)^2 -4(-4.9)(15.5)))/(2(-4.9))
= (22.8 ± √823.64)/(-9.8)
The positive solution is ...
t ≈ 0.60195193
It takes about 602 milliseconds for the arrow to reach the ground.
Question:
A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero
Answer:
24 m/s
Explanation:
Given:
x=(24t - 2.0t³)m
First find velocity function v(t):
v(t) = ẋ(t) = 24 - 2*3t²
v(t) = ẋ(t) = 24 - 6t²
Find the acceleration function a(t):
a(t) = Ẍ(t) = V(t) = -6*2t
a(t) = Ẍ(t) = V(t) = -12t
At acceleration = 0, take time as T in velocity function.
0 =v(T) = 24 - 6T²
Solve for T
Substitute -2 for t in acceleration function:
a(t) = a(T) = a(-2) = -12(-2) = 24 m/s
Acceleration = 24m/s
Answer:
0.423m
Explanation:
Conversion to metric unit
d = 4.8 cm = 0.048m
Let water density be 
Let gravitational acceleration g = 9.8 m/s2
Let x (m) be the length that the spring is stretched in equilibrium, x is also the length of the cylinder that is submerged in water since originally at a non-stretching position, the cylinder barely touches the water surface.
Now that the system is in equilibrium, the spring force and buoyancy force must equal to the gravity force of the cylinder. We have the following force equation:

Where
N is the spring force,
is the buoyancy force, which equals to the weight
of the water displaced by the submerged portion of the cylinder, which is the product of water density
, submerged volume
and gravitational constant g. W = mg is the weight of the metal cylinder.

The submerged volume would be the product of cross-section area and the submerged length x

Plug that into our force equation and we have


