Answer:
2.63 x 10^18
Explanation:
A = 1 cm^2 = 1 x 10^-4 m^2
λ = 10,000 nm = 10,000 x 10^-9 m = 10^-5 m
T = 37 degree C = 37 + 273 = 310 k
Energy of each photon = h c / λ
where, h is the Plank's constant and c be the velocity of light
Energy of each photon = (6.63 x 10^-34 x 3 x 10^8) / 10^-5 = 1.989 x 10^-20 J
Energy radiated per unit time = σ A T^4
Where, σ is Stefan's constant
Energy radiated per unit time = 5.67 x 10^-8 x 10^-4 x 310^4 = 0.05236 J
Number of photons per second = Energy radiated per unit time / Energy of
each photon
Number of photons per second = 0.05236 / (1.989 x 10^-20) = 2.63 x 10^18
Answer:
17.55 m/s²
Explanation:
Parameters given:
Mass of Krypton, M = 7.6 * 10^23 kg
Radius, R = 1.7 * 10^6 m
Gravitational constant, G = 6.6726 * 10^(-11) Nm²/kg²
Acceleration due to gravity of planet of mass M is given as:
g = GM/R²
Since the object is close to the surface of Krypton, we can say that the distance from the Centre of Krypton is the radius of the planet Krypton.
Therefore,
g = (6.6726 * 10^(-11) * 7.6 * 10^23)/(1.7 * 10^6)²
g = 17.55 m/s²
Answer:
a = 17.68 m/s²
Explanation:
given,
length of the string, L = 0.8 m
angle made with vertical, θ = 61°
time to complete 1 rev, t = 1.25 s
radial acceleration = ?
first we have to calculate the radius of the circle
R = L sin θ
R = 0.8 x sin 61°
R = 0.7 m
now, calculating at the angular velocity


ω = 5.026 rad/s
now, radial acceleration
a = r ω²
a = 0.7 x 5.026²
a = 17.68 m/s²
hence, the radial acceleration of the ball is equal to 17.68 rad/s²
Answer: True
Explanation: Because of the way this water cycle has always circulated our planet, there is indeed a chance that the water in your glass is the same water that thirsty dinosaurs were drinking about 65 million years ago
A spinning top is the answer