Check the picture below.
so the area of the hexagon is really just the area of two isosceles trapezoids.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ a=2\\ b=4\\ h=2 \end{cases}\implies \begin{array}{llll} A=\cfrac{2(2+4)}{2}\implies A=6 \\\\\\ \stackrel{\textit{twice that much}}{2A = 12} \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D2%5C%5C%20b%3D4%5C%5C%20h%3D2%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20A%3D%5Ccfrac%7B2%282%2B4%29%7D%7B2%7D%5Cimplies%20A%3D6%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Btwice%20that%20much%7D%7D%7B2A%20%3D%2012%7D%20%5Cend%7Barray%7D)
The rigth equation to anticipate the profit after t years is p(t) = 10,000 (1.075)^t
So, given that both store A and store B follow the same equations but t is different for them, you can right:
Store A: pA (t) 10,000 (1.075)^t
Store B: pB(t'): 10,000 (1.075)^t'
=> pA(t) / pB(t') = 1.075^t / 1.075^t'
=> pA(t) / pB(t') = 1.075 ^ (t - t')
And t - t' = 0.5 years
=> pA(t) / pB(t') = 1.075 ^ (0.5) = 1.0368
or pB(t') / pA(t) = 1.075^(-0.5) = 0.964
=> pB(t') ≈ 0.96 * pA(t)
Which means that the profit of the store B is about 96% the profit of store A at any time after both stores have opened.
The value of scale k is 3
Step-by-step explanation:
In order to find the scale , we can either divide the coordinates of H' by the original point or compare both the points to find the original ordered pair.
Given
H(3,4)
H'(9,12)
The coordinates of H are multiplied with some integer k to form H'
So,
<u>For x-coordinate:</u>
3k = 9
k = 9/3 = 3
<u>For y-coordinate:</u>
4k = 12
k = 12/4 = 3
Hence,
The value of scale k is 3
Keywords: Coordinate geometry, scaling
Learn more about scaling at:
#LearnwithBrainly
Answer:
Correct option: (a) 0.1452
Step-by-step explanation:
The new test designed for detecting TB is being analysed.
Denote the events as follows:
<em>D</em> = a person has the disease
<em>X</em> = the test is positive.
The information provided is:

Compute the probability that a person does not have the disease as follows:

The probability of a person not having the disease is 0.12.
Compute the probability that a randomly selected person is tested negative but does have the disease as follows:
![P(X^{c}\cap D)=P(X^{c}|D)P(D)\\=[1-P(X|D)]\times P(D)\\=[1-0.97]\times 0.88\\=0.03\times 0.88\\=0.0264](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%29%3DP%28X%5E%7Bc%7D%7CD%29P%28D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%20P%28D%29%5C%5C%3D%5B1-0.97%5D%5Ctimes%200.88%5C%5C%3D0.03%5Ctimes%200.88%5C%5C%3D0.0264)
Compute the probability that a randomly selected person is tested negative but does not have the disease as follows:
![P(X^{c}\cap D^{c})=P(X^{c}|D^{c})P(D^{c})\\=[1-P(X|D)]\times{1- P(D)]\\=0.99\times 0.12\\=0.1188](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%5E%7Bc%7D%29%3DP%28X%5E%7Bc%7D%7CD%5E%7Bc%7D%29P%28D%5E%7Bc%7D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%7B1-%20P%28D%29%5D%5C%5C%3D0.99%5Ctimes%200.12%5C%5C%3D0.1188)
Compute the probability that a randomly selected person is tested negative as follows:


Thus, the probability of the test indicating that the person does not have the disease is 0.1452.
True...............................................................