1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
2 years ago
11

2. What is 18% of 29?

Mathematics
1 answer:
mylen [45]2 years ago
3 0

Answer:

5.22

Step-by-step explanation:

18% = 18/100 or 0.18

18/100 * 29 = 522/100 or 5.22

You might be interested in
4. If A is at (4, -1) and B is at (2,-7), find the midpoint of segment AB.
melomori [17]
The answer is (3,-4). On a graph you see it is right in the middle. Hope this helps.

8 0
2 years ago
HELP!! Algebra help!! Will give stars thank u so much <333
Anna35 [415]

Answers:

  • Part a)  \bf{\sqrt{x^2+(x^2-3)^2}
  • Part b)  3
  • Part c)   2.24
  • Part d)  1.58

============================================================

Work Shown:

Part (a)

The origin is the point (0,0) which we'll make the first point, so let (x1,y1) = (0,0)

The other point is of the form (x,y) where y = x^2-3. So the point can be stated as (x2,y2) = (x,y). We'll replace y with x^2-3

We apply the distance formula to say...

d = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\\\d = \sqrt{(0-x)^2+(0-y)^2}\\\\d = \sqrt{(0-x)^2+(-y)^2}\\\\d = \sqrt{x^2 + y^2}\\\\d = \sqrt{x^2 + (x^2-3)^2}\\\\

We could expand things out and combine like terms, but that's just extra unneeded work in my opinion.

Saying d = \sqrt{x^2 + (x^2-3)^2} is the same as writing d = sqrt(x^2-(x^2-3)^2)

-------------------------------------------

Part (b)

Plug in x = 0 and you should find the following

d(x) = \sqrt{x^2 + (x^2-3)^2}\\\\d(0) = \sqrt{0^2 + (0^2-3)^2}\\\\d(0) = \sqrt{(-3)^2}\\\\d(0) = \sqrt{9}\\\\d(0) = 3\\\\

This says that the point (x,y) = (0,3) is 3 units away from the origin (0,0).

-------------------------------------------

Part (c)

Repeat for x = 1

d(x) = \sqrt{x^2 + (x^2-3)^2}\\\\d(1) = \sqrt{1^2 + (1^2-3)^2}\\\\d(1) = \sqrt{1 + (1-3)^2}\\\\d(1) = \sqrt{1 + (-2)^2}\\\\d(1) = \sqrt{1 + 4}\\\\d(1) = \sqrt{5}\\\\d(1) \approx 2.23606797749979\\\\d(1) \approx 2.24\\\\

-------------------------------------------

Part (d)

Graph the d(x) function found back in part (a)

Use the minimum function on your graphing calculator to find the lowest point such that x > 0.

See the diagram below. I used GeoGebra to make the graph. Desmos probably has a similar feature (but I'm not entirely sure). If you have a TI83 or TI84, then your calculator has the minimum function feature.

The red point of this diagram is what we're after. That point is approximately (1.58, 1.66)

This means the smallest d can get is d = 1.66 and it happens when x = 1.58 approximately.

6 0
2 years ago
What is the slope of the line?
erma4kov [3.2K]

Answer:

4/2

Step-by-step explanation:

you just count lol akakksksksksosodbxbdbsjakksbdhsjajsjxjs

8 0
2 years ago
Which unit of measure would be appropriate for the volume of a sphere with a radius of 2 meters?
Goryan [66]

The volume of a figure is the quantity of three-dimensional space enclosed by a closed surface, or simpler the number of cubes required to fill it completely.

The basic unit of volume in the metric system is the liter (l).There are 1000 liters per cubic meter.

Howeever, the unit of measure that would be appropriate for the volume of a sphere with a radius of 2 meters is cubic meters. Correct answer: C


4 0
3 years ago
Please help me for the love of God if i fail I have to repeat the class
Elena-2011 [213]

\theta is in quadrant I, so \cos\theta>0.

x is in quadrant II, so \sin x>0.

Recall that for any angle \alpha,

\sin^2\alpha+\cos^2\alpha=1

Then with the conditions determined above, we get

\cos\theta=\sqrt{1-\left(\dfrac45\right)^2}=\dfrac35

and

\sin x=\sqrt{1-\left(-\dfrac5{13}\right)^2}=\dfrac{12}{13}

Now recall the compound angle formulas:

\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta

\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta

\sin2\alpha=2\sin\alpha\cos\alpha

\cos2\alpha=\cos^2\alpha-\sin^2\alpha

as well as the definition of tangent:

\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}

Then

1. \sin(\theta+x)=\sin\theta\cos x+\cos\theta\sin x=\dfrac{16}{65}

2. \cos(\theta-x)=\cos\theta\cos x+\sin\theta\sin x=\dfrac{33}{65}

3. \tan(\theta+x)=\dfrac{\sin(\theta+x)}{\cos(\theta+x)}=-\dfrac{16}{63}

4. \sin2\theta=2\sin\theta\cos\theta=\dfrac{24}{25}

5. \cos2x=\cos^2x-\sin^2x=-\dfrac{119}{169}

6. \tan2\theta=\dfrac{\sin2\theta}{\cos2\theta}=-\dfrac{24}7

7. A bit more work required here. Recall the half-angle identities:

\cos^2\dfrac\alpha2=\dfrac{1+\cos\alpha}2

\sin^2\dfrac\alpha2=\dfrac{1-\cos\alpha}2

\implies\tan^2\dfrac\alpha2=\dfrac{1-\cos\alpha}{1+\cos\alpha}

Because x is in quadrant II, we know that \dfrac x2 is in quadrant I. Specifically, we know \dfrac\pi2, so \dfrac\pi4. In this quadrant, we have \tan\dfrac x2>0, so

\tan\dfrac x2=\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\dfrac32

8. \sin3\theta=\sin(\theta+2\theta)=\dfrac{44}{125}

6 0
3 years ago
Other questions:
  • When you solve an equation, you must
    7·1 answer
  • A wall clock loses 3 minutes each day. The clock showed the correct time on Monday at 11:00 am. What time will the clock show at
    5·1 answer
  • 1. You are making gift bags to give to your friends at a birthday party. You have 36 candy bars, 24 pencils, and 48 erasers to d
    15·2 answers
  • Craign has a building block in the shape of a rectangular pyramid .A net of which is shown below.If a measures 12 cm b measures
    13·1 answer
  • During a certain six-year
    5·1 answer
  • A punch recipe that serves 24 people calls for:
    11·2 answers
  • Geometry...................
    7·1 answer
  • The data set below has 6 values.
    13·1 answer
  • Marta's dog just had six puppies. Four are female (F), and two are male (M). One of the males is brown. Two of the females are b
    5·1 answer
  • Damon drove 120 miles in 2 hours and Ashley drove 135 miles in 2.3 hours Ashley insists that she was traveling at a faster rate
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!