A rational number is any number that can be expressed as a fraction
(ex: -5/2, 4 1/7, and 8/13)
An irrational number is any number that cannot be expressed as a fraction; a non-repeating, non-terminating decimal (ex: pi, 0.121231234...)
Hope this helps! :)
Answer:

Step-by-step explanation:
Use the Pythagorean Theorem:
![\displaystyle a^2 + b^2 = c^2 \\ \\ 9,7^2 + b^2 = 13,3^2; \sqrt{82,8} = \sqrt{b^2} \\ \\ \frac{3\sqrt{230}}{5}\:[or\:9,0994505329...] = b](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%5E2%20%2B%20b%5E2%20%3D%20c%5E2%20%5C%5C%20%5C%5C%209%2C7%5E2%20%2B%20b%5E2%20%3D%2013%2C3%5E2%3B%20%5Csqrt%7B82%2C8%7D%20%3D%20%5Csqrt%7Bb%5E2%7D%20%5C%5C%20%5C%5C%20%5Cfrac%7B3%5Csqrt%7B230%7D%7D%7B5%7D%5C%3A%5Bor%5C%3A9%2C0994505329...%5D%20%3D%20b)
So, you have this:

I am joyous to assist you at any time.
Answer:
I THINK it's B, could be wrong.
Step-by-step explanation:
Answer:
5sqrt(2)
Step-by-step explanation:
you can split 50 into sqrt(25×2)
and the sqrt(25) is 5, so than your left with just the 2 in the sqrt.
Answer:

Step-by-step explanation:
![\sf \sqrt{-10} \\\\\sqrt{10} * \sqrt{-1} \\\\We \ know \ that \ \sqrt{-1} = i\\\\= \sqrt{10} i\\\\= \sqrt{2*5 } i \\\\Since \ 2 \ and \ 5 \ are \ not \ perfect \ squares, they \ cannot \ be \ simplified\ further.\\\\= \sqrt{10} i\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%20%5Csqrt%7B-10%7D%20%5C%5C%5C%5C%5Csqrt%7B10%7D%20%2A%20%5Csqrt%7B-1%7D%20%5C%5C%5C%5CWe%20%5C%20know%20%5C%20that%20%5C%20%5Csqrt%7B-1%7D%20%3D%20i%5C%5C%5C%5C%3D%20%5Csqrt%7B10%7D%20i%5C%5C%5C%5C%3D%20%5Csqrt%7B2%2A5%20%7D%20i%20%5C%5C%5C%5CSince%20%5C%202%20%5C%20and%20%5C%205%20%5C%20are%20%5C%20not%20%5C%20perfect%20%5C%20squares%2C%20they%20%5C%20cannot%20%5C%20be%20%20%5C%20simplified%5C%20further.%5C%5C%5C%5C%3D%20%5Csqrt%7B10%7D%20i%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>