Circumference=24 pi
Area=144 pi, shown clearly in photo
Answer:
3/4 i believe
Step-by-step explanation:
Answer:
104.8 in^2
Step-by-step explanation:
There are 2 ways to solve this problem.
The 1st way:
Let's make 2 triangles and 1 rectangle:
Rectangle Length = 8.3
Rectangle Width = 8
So, the left out length will be 17.9 - 8.3
=> 9.6
Since, 9.6 cm is for 2 parts.
=> 9.6 / 2
=> 4.8
So, Height of the Triangle = 8
Base of the triangle = 4.8
Area of a rectangle
=> 8.3 x 8
=> 66.4
Area of the triangle
=> 1/2 x 8 x 4.8
=> 4 x 4.8
=> 19.2
There are 2 triangles:
=> 19.2 x 2
=> 38.4
=> 66.4 + 38.4
=> 104.8
The area of the trapezoid = 104.8 in^2.
The 2nd way is:
Area of a trapezoid
=> Smaller Base + Larger Base / 2 x Height
=> 8.3 + 17.9 / 2 x 8
=> 26.2 / 2 x 8
=> 13.1 x 8
=> 104.8
The area of the trapezoid is 104.8 in^2
Answer:
Cynthia and I will be there at the same time I don't have a car you have a car you have a car you have a car you have a car you have a car you have a car you have
Split up the interval [0, 8] into 4 equally spaced subintervals:
[0, 2], [2, 4], [4, 6], [6, 8]
Take the right endpoints, which form the arithmetic sequence

where 1 ≤ <em>i</em> ≤ 4.
Find the values of the function at these endpoints:

The area is given approximately by the Riemann sum,

where
; so the area is approximately

where we use the formulas,

