2.3 recurring
Hope this helps you
Answer:
C = 6
Step-by-step explanation:
Move all terms that don't contain C to the right side and solve.
Answer:
<h2>
3,654 different ways.</h2>
Step-by-step explanation:
If there are 30 students in a class with natasha in the class and natasha is to select four leaders in the class of which she is already part of the selection, this means there are 3 more leaders needed to be selected among the remaining 29 students (natasha being an exception).
Using the combination formula since we are selecting and combination has to do with selection, If r object are to selected from n pool of objects, this can be done in nCr number of ways.
nCr = n!/(n-r)!r!
Sinca natasha is to select 3 more leaders from the remaining 29students, this can be done in 29C3 number of ways.
29C3 = 29!/(29-3)!3!
29C3 = 29!/(26!)!3!
29C3 = 29*28*27*26!/26!3*2
29C3 = 29*28*27/6
29C3 = 3,654 different ways.
This means that there are 3,654 different ways to select the 4 leaders so that natasha is one of the leaders
Answer:
A(t) = 200+15t(1+0.02)^{t}
Step-by-step explanation:
Since the interest is calculated on the new balance every year.
Hence the formula used for compound interest is:
A = P(1+
^{nt}
where, A =Amount after t years
P =Principal amount
200 is the initial balance and Since, here the $15 is added to the balance each year. Therefore, P = 200+15t
r = rate each year (0.02)
t = time (in years) (t)
n = no. of times the interest is compounded in a year (n=1)
Therefore, the recursive formula is:
A(t) = 200+15t(1+0.02)^{t}
Answer:
The larger number is 96.
Step-by-step explanation:
