1) Balanced chemical equation:
2SO2 (g) + O2 (g) -> 2SO3 (l)
2) Molar ratios
2 mol SO2 : 1 mol O2 : 2 mol SO3
3) Convert 6.00 g O2 to moles
number of moles = mass in grams / molar mass
number of moles = 6.00 g / 32 g/mol = 0.1875 mol O2.
4) Use proportions with the molar ratios
=> 2 moles SO2 / 1 mol O2 = x / 0.1875 mol O2
=> x = 0.1875 mol O2 * 2 mol SO2 / 1 mol O2 = 0.375 mol SO2.
5) Convert 0.375 mol SO2 to grams
mass in grams = number of moles * molar mass
molar mass SO2 = 32 g/mol + 2*16 g/mol = 64 g/mol
=> mass SO2 = 0.375 mol * 64 g / mol = 24.0 g
Answer: 24.0 g of SO2 are needed to react completely with 6.00 g O2.
Answer: a rection will most likely occur if the colliding partilces have the proper orientation and energy.
The reactions occur becasue the molecules collide.
But not all the collisions result in a reaction.
The collisions have to meet some requirements.
Two of the basic requirements is that the collision has enough energy to overcome the activation energy and that the molecules collide in the riight way.
When two molecules react it is necessary that one element of one of the molecules interact when a specific element or group in the other molecule. That is the orientation must be the right one.
Collisions that to not have the proper orientation or enough energy will not cause reaction (changes in the bonds of the molecules).
Methane is lighter than air, having a specific gravity of 0.554. It is only slightly soluble in water. It burns readily in air, forming carbon dioxide
and water vapour; the flame is pale, slightly luminous, and very hot.
The boiling point of methane is −162 °C (−259.6 °F) and the melting
point is −182.5 °C (−296.5 °F). Methane in general is very stable, but
mixtures of methane and air, with the methane content between 5 and 14
percent by volume, are explosive. Explosions of such mixtures have been
frequent in coal mines and collieries and have been the cause of many
mine disasters.
The concentration of hydronium ions equals that to hydroxide ions the answer is A) pH is equal tot he negative log of hydrogen. the pH of water is 7 which equal to 10^-7 of H+ and OH- ions.
<span>Sulfur Hexachloride
SCl6 So now we count the number of valence electrons each has by seeing what column it's in, (1-8) not counting the columns of the transition metals.
Since Sulfur is in the 6th and Chlorine is in the 7th, and there are 6 chlorines, we can add up all their valence electrons:
6*1+7*6=48 valence electrons.
But remember that electrons come in pairs, either in bonds or as lone pairs. So I usually divide the valence electron number by 2 and just think about placing pairs. It's up to you, but I think it's convenient since we can count "1" in our mind each time we place a bond or a electron pair. So we need to place 24 pairs/bonds.
So we can guess that sulfur is a central atom and draw out a bond from sulfur to each chlorine. Since Sulfur is in the 3rd row it can use d-orbitals to break the octet rule. So when we bond all the chlorines onto sulfur we get:
(see the figure)
and
</span><span>So we made 6 bonds, that means we used up 12 electrons, so if you're counting (AND YOU SHOULD BE!) you have 36 electrons or simply 18 electron pairs left to place. Now let's give chlorine a neutral charge.</span>