Answer:
Bond energy of carbon-fluorine bond is 485 kJ/mol
Explanation:
Enthalpy change for a reaction, is given as:
![\Delta H_{rxn}=\sum [n_{i}\times (E_{bond})_{i}]-\sum [n_{j}\times (E_{bond})_{j}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bj%7D%5D)
Where
and
represents average bond energy in breaking "i" th bond and forming "j" th bond respectively.
and
are number of moles of bond break and form respectively.
In this reaction, one mol of C=C, four moles of C-H and one mol of F-F bonds are broken. One mol of C-C bond, four moles of C-H bonds and two moles of C-F bonds are formed
So, 
or, 
or, 
So bond energy of carbon-fluorine bond is 485 kJ/mol
The strong Base with a pH of 12 is reduced by 4 units upon being added with solution Y. If you added a strong acid to the strong base, all ions are present in the solution, yes? So every OH- is neutralised by every H+ for example, meaning the resultant pH should be 7. The resultant pH is only 8 however, so solution Y must be a <em>weak acid </em>only!
It's A: an animal that transfers pollen from flower to flower.
Good Luck!
Answer: sorry I’m not sure
Odjri: