<span>You have multiple confounding variables, you cannot accurately conclude the relationship between the manipulated and dependent variable because the other variables that are not controlled for could be the reason for seeing a certain change</span>
There will be 13 new moons to occur in 2016 im pretty sure
Efficiency η of a Carnot engine is defined to be:
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>
<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>
<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>
<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>
Given data:
* The extension of the steel wire is 0.3 mm.
* The length of the wire is 4 m.
* The area of cross section of wire is,

* The young modulus of the steel is,

Solution:
The young modulus of the steel in terms of the force and extension is,

where F is the force acting on the steel wire,, l is the original length of the wire, dl is the extension of the wire, and A is the area,
Substituting the known values,

Thus, the force which produce the extension of 0.3 mm of the steel wire is 31.5 N.
Explanation:
The heat Q transferred to cause a temperature change depends on the magnitude of the temperature change, the mass of the system, and the substance and phase involved.