there will no resultant force
Explanation:
this is because if the forces are balanced on opposite direction. then they cancel each other out
5 newton's ---------> <--------- 5 newton's
then both forces will cancel each other out as a result there is no resultant force and the newton's laws states that if there is no resultant the object will continue in its state of rest (remains there) or it will in continue in its uniform motion in a straight line.
I hope you understand,
The north vectors add up as so the south vectors. Then subtract the two. For north its 4 + 5 = 9. South is 2 + 5 = 7. Then 9-7 = 2km North (D)
Answer:
2.96 × 10^4 N
Explanation:
1 atm = 101325 N/m², pressure inside the airtight room = 1.02 atm, pressure outside due to hurricane = 0.91 atm
net pressure directed outward = P inside - P outside
net pressure = 1.02 - 0.91 = 0.11 atm
where 1 atm = 101325N/m²
0.11 atm = 0.11 × 101325 N/m² = 11145.75 N/m²
area of the square wall = l × l where l is the length of the wall in meters = 1.63 × 1.63 = 2.6569
net pressure = net force / area
make net force subject of the formula
net force = net pressure × area = 11145.75 × 2.6569 = 2.96 × 10 ^4 N
Answer:
1.925 μC
Explanation:
Charge: This can be defined as the product of the capacitance of a capacitor and the voltage. The S.I unit of charge is Coulombs (C)
The formula for the charge stored in a capacitor is given as,
Q = CV ................... Equation 1
Where Q = charge, C = Capacitor, V = Voltage.
Note: 1 μF = 10⁻⁶ F
Given: C = 0.55 μF = 0.55×10⁻⁶ F, V = 3.5 V.
Substitute into equation 1
Q = 0.55×10⁻⁶×3.5
Q = 1.925×10⁻⁶ C.
Q = 1.925 μC
Hence the charge on the plate = 1.925 μC
Answer:
Thermodynamics is usually defined as a branch of physics that deals with the study of the heat and various form of energy, and their interaction between the.
The first law says that heat appears as energy, and it cannot be produced and also cannot be demolished. It can only change from one form to another. This signifies that the total amount of energy present in the universe remains constant.
This first law can be mathematically represented as:
ΔU = Q - W
where ΔU = Changes occurring in the internal energy
Q = amount of heat added to the system
W = Amount of work done by the system