Heat is energy, and that energy would eventually cause the object to undergo a phase change.
Potassium hydroxide (KOH) is formed when Potassium forms ionic bonds with OH-ions while Potassium Oxide (K2O) is formed when potassium forms ionic bonds with the Oxide (O2-) ions. i.e. This reaction is a neutralization reaction and occurs when an acid (HCl) reacts with a base (KOH).
A simple way to go about this is that we look at the solubility curve, on the x axis we first look at the temperature and then the corresponding value of solute/100g H2O on the y axis, from the 4 curves above only NaNO3 has a curve that can accommodate 80g of salt at 40 without being Saturated since at 40 degrees it can accommodate 105g of salt to become completely Saturated.
Answer:
strength = 10⁻²/10⁻³ = 10 times more acidic
Explanation:
1. A solution with a pH of 9 has a pOH of
pH + pOH = 14 => pOH = 14 - pH = 14 - 9 = 5
2. Which is more acidic, a solution with a pH of 6 or a pH of 4?
pH of 4 => Higher [H⁺] = 10⁻⁴M vs pH of 6 => [H⁺] = 10⁻⁶M
3. How many times more acidic is a solution with a pH of 2 than a solution with a pH of 3?
soln with pH = 2 => [H⁺] = 10⁻²M
soln with pH = 3 => [H⁺] = 10⁻³M
strength = 10⁻²/10⁻³ = 10 times more acidic
4. What is the hydrogen ion concentration [H + ] in a solution that has a pH of 8?
[H⁺] = 10^-pH = 10⁻⁸M
5. A solution has a pOH of 9.6. What is the pH? (Use the formula.)
pH + pOH = 14 => pH = 14 - 9.6 = 4.4
Answer:

Explanation:
We have the equation for ideal gas expressed as:
PV=nRT
Being:
P = Pressure
V = Volume
n = molar number
R = Universal gas constant
T = Temperature
From the statement of the problem I infer that we are looking to change the volume and the pressure, maintaining the temperature, so I can calculate the right side of the equation with the data of the initial condition of the gas:



So

Now, as for the final condition:


clearing


