Answer:
Relating to, measured from, or as if observed from the earth's center.
Initial volume of the balloon =
= 348 mL
Initial temperature of the balloon
= 
Final volume of the balloon
= 322 mL
Final temperature of the balloon = 
According to Charles law, volume of an ideal gas is directly proportional to the temperature at constant pressure.

On plugging in the values,


Therefore, the temperature of the freezer is 276 K
False it is actually called a neutralization reaction.
Answer:
-191.7°C
Explanation:
P . V = n . R . T
That's the Ideal Gases Law. It can be useful to solve the question.
We replace data:
2.5 atm . 8 L = 3 mol . 0.082 L.atm/mol.K . T°
(2.5 atm . 8 L) / (3 mol . 0.082 L.atm/mol.K) = T°
T° = 81.3 K
We convert T° from K to C°
81.3K - 273 = -191.7°C