Answer:
The sample will look expanded and occupy more space.
Explanation:
Since, the pressure is constant here, but the temperature is changed. Therefore, according to Charles' Law Volume is directly proportional to Temperature, provided the pressure is kept constant. Mathematically:
V1/T1 = V2/T2
V1 = (T1/T2)(V2)
V1 = (300 k/450 k)(V2)
<u>V1 = (0.67)V2</u>
The equation indicates that The fina volume of the gas V2 will be greater than the initial volume V1. <u>Thus, sample will look expanded and occupy more space than the previous state.</u>
Answer:
C2H5O
Explanation:
In a 100 g sample we would have
53.31 g of C
11.18g of H
35.51g of O
First, we find the relative number of atoms of each element by dividing the number of grams the element has in the compound by its atomic mass.
Atomic mass of carbon is 12.011
Relative number of carbon atoms = 53.31 / 12.011 = 4.4
Atomic mass of hydrogen = 1.007
Relative number of hydrogen atoms : 11.18/1.007 = 11.1
Atomic mass of oxygen : 15.999
Relative number of oxygen atoms : 35.51 / 15.999 = 2.2
Now we find a ratio of the relative number of atoms by dividing the # of relative atoms of each element by the element's relative number of atoms that had the lowest number. ( oxygen which had 2.2 ) The outcome of each will be the subscript or number of atoms of each element.
Carbon : 4.4 / 2.2 = 2
Hydrogen : 11.1 / 2.2 = 5
Oxygen : 2.2 / 2.2 = 1
The answer is C2H5O
Answer:
0.209
Explanation:
when dealing with mL to L the rule of thumb seems to be to move your decimal place back two spaces.
Answer:
The answer would be B.
Explanation:
Ocean water near areas with low evaporation has higher salinity.
if im wrong please tell me .__.
Yes it is available. It will continue catalyzing the reactions until it becomes completely consumed. That's how enzymes work. They work and are eventually consumed in the process completely without altering the reaction in any way other than speeding it up.
<span />