Answer:
92.5 cm²
Step-by-step explanation:
Lets take this step by step
Bottom rectangle is 2 by 5, so then 2*5 = 10
Large rectangle is 8 by 9, so 8*9 = 72
The triangle is 7 by 3, you get the 7 by subtracting the 5 side from the square because using the square you can tell that the height is 9 - something.
The 5 you get is from subtracting the cut part that you might have made because the height of that is 2, therefore you cut off 2 from 7 making it 5
Triangle area is h*b / 2, therefore 7*3 = 21/2 = 10.5
Add them all together, 10.5 + 10 + 72 and you get 92.5
Answer:
Answer 2
Step-by-step explanation:
the number are being added together based on their position
Answer:
x=28
Step-by-step explanation:
Answer:
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Step-by-step explanation:
Given integral is I= 
Take logx=t





I= 
I= 
Using integration by part,
![I= (t)\int [e^{(n+1)t}]\, dt-\int[\frac{d}{dt}{t}\times\int (e^{(n+1)t})]\\\\I= (t) [\frac{1}{n+1}e^{(n+1)t}]-\int[1\times\frac{1}{n+1}e^{(n+1)t}]\,dt\\\\I=[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=I%3D%20%28t%29%5Cint%20%5Be%5E%7B%28n%2B1%29t%7D%5D%5C%2C%20dt-%5Cint%5B%5Cfrac%7Bd%7D%7Bdt%7D%7Bt%7D%5Ctimes%5Cint%20%28e%5E%7B%28n%2B1%29t%7D%29%5D%5C%5C%5C%5CI%3D%20%28t%29%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5Cint%5B1%5Ctimes%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D%5C%2Cdt%5C%5C%5C%5CI%3D%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
Writing in terms of x
I=![[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
I=![[\frac{logx}{n+1}e^{(n+1)logx}]-[\frac{1}{(n+1)^{2}}e^{(n+1)logx}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29logx%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29logx%7D%5D)
I=![[\frac{logx}{n+1}e^{logx^{(n+1)}}]-[\frac{1}{(n+1)^{2}}e^{logx^{(n+1)}}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D)
I=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Thus,
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Find slope: parallel lines have same slope
−x+3y=6
+x +x
----------------
3y=x+6
3/3y=x/3+6/3
y=1/3x+2
Slope=1/3
Use slope and point (3, 5) to find b, y- intercept
y=mx+b
(5)=(1/3)(3)+b
5=1+b
5-1=1-1+b
4=b
Now we put it all together using m=1/3 and b=4
y=1/3x+4